A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The protocol presented here shows a technique to create a rodent model of brain injury. The method described here uses laser irradiation and targets motor cortex.
A common technique for inducing stroke in experimental rodent models involves the transient (often denoted as MCAO-t) or permanent (designated as MCAO-p) occlusion of the middle cerebral artery (MCA) using a catheter. This generally accepted technique, however, has some limitations, thereby limiting its extensive use. Stroke induction by this method is often characterized by high variability in the localization and size of the ischemic area, periodical occurrences of hemorrhage, and high death rates. Also, the successful completion of any of the transient or permanent procedures requires expertise and often lasts for about 30 minutes. In this protocol, a laser irradiation technique is presented that can serve as an alternative method for inducing and studying brain injury in rodent models.
When compared to rats in the control and MCAO groups, the brain injury by laser induction showed reduced variability in body temperature, infarct volume, brain edema, intracranial hemorrhage, and mortality. Furthermore, the use of a laser-induced injury caused damage to the brain tissues only in the motor cortex unlike in the MCAO experiments where destruction of both the motor cortex and striatal tissues is observed.
Findings from this investigation suggest that laser irradiation could serve as an alternative and effective technique for inducing brain injury in the motor cortex. The method also shortens the time for completing the procedure and does not require expert handlers.
Globally, stroke is the second leading cause of death and the third leading cause of disability1. Stroke also leads to severe disability, often requiring extra care from medical staff and relatives. There is, therefore, a need to understand the complications associated with the disorder and improve the potential for more positive outcomes.Â
The use of animal models is the initial step to understanding diseases. To ensure the best research outcomes, a typical model would include a simple technique, affordability, high reproducibility, and minimal variability. The determinants in ischemic stroke models include bra....
The following procedure was conducted according to the Guidelines of the Use of Experimental Animals of the European Community. The experiments were also approved by the Animal Care Committee at the Ben-Gurion University of the Negev.
1. Animal selection and preparation
No deaths or SAH were registered in either the control or experimental groups (Table 1). The MCAO group had a 20% rate of both mortality and SAH.
The relative body temperature changes in the rats of both groups were also similar, despite a difference in the variability of both groups (Table 1).
There was a significantly worse NSS in both the laser (16 ± 1.1) and MCAO (20 ± 1.5) models, compared to the sham-operated control.......
It is fair to assume that the laser technique is minimally invasive, given that no deaths or SAH occurred in the laser group. The primary cause of death and SAH is the damage to blood vessels that leads to an elevation of intracranial pressure (ICP), as shown in the original MCAO techniques10. The absence of death and SAH in the laser group is likely due to the specific effects of lasers: they do not have direct impact on blood vessels and can induce coagulation in case of leakage. Low infarct vol.......
We would like to thank the Department of Anesthesiology of Soroka University Medical Center and the laboratory staff of Ben-Gurion University of the Negev for their help in the performance of this experiment.
....Name | Company | Catalog Number | Comments |
2,3,5-Triphenyltetrazolium chloride | SIGMA - ALDRICH | 298-96-4 | |
50% trichloroacetic acid | SIGMA - ALDRICH | 76-03-9 | |
Brain & Tissue Matrices | SIGMA - ALDRICH | 15013 | |
Cannula Venflon 22 G | KD-FIX | 1.83604E+11 | |
Centrifuge Sigma 2-16P | SIGMA - ALDRICH | Sigma 2-16P | |
Compact Analytical Balances | SIGMA - ALDRICH | HR-AZ/HR-A | |
Digital Weighing Scale | SIGMA - ALDRICH | Rs 4,000 | |
Dissecting scissors | SIGMA - ALDRICH | Z265969 | |
Eppendorf pipette | SIGMA - ALDRICH | Z683884 | |
Eppendorf Tube | SIGMA - ALDRICH | EP0030119460 | |
Ethanol 96 % | ROMICAL | Flammable Liquid | |
Evans Blue 2% | SIGMA - ALDRICH | 314-13-6 | |
Fluorescence detector | Tecan, Männedorf Switzerland | model Infinite 200 PRO multimode reader | |
Heater with thermometer | Heatingpad-1 | Model: HEATINGPAD-1/2 | |
Infusion Cuff | ABN | IC-500 | |
Isofluran, USP 100% | Piramamal Critical Care, Inc | NDC 66794-017 | |
Multiset | TEVA MEDICAL | 998702 | |
Olympus BX 40 microscope | Olympus | ||
Optical scanner | Canon | Cano Scan 4200F | |
Petri dishes | SIGMA - ALDRICH | P5606 | |
Scalpel blades 11 | SIGMA - ALDRICH | S2771 | |
Sharplan 3000 Nd:YAG (neodymium-doped yttrium aluminum garnet) laser machine | Laser Industries Ltd | ||
Stereotaxic head holder | KOPF | 900LS | |
Sterile Syringe 2 ml | Braun | 4606027V | |
Syringe-needle 27 G | Braun | 305620 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved