Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a canonical method to understand the critical genes controlling osteoclast activity in vivo. This method uses a transgenic mouse model and some canonical techniques to analyze skeletal phenotype.

Abstract

Transgenic mouse models are powerful for understanding the critical genes controlling osteoclast differentiation and activity, and for studying mechanisms and pharmaceutical treatments of osteoporosis. Cathepsin K (Ctsk)-Cre mice have been widely used for functional studies of osteoclasts. The signal transducer and activator of transcription 3 (STAT3) is relevant in bone homeostasis, but its role in osteoclasts in vivo remains poorly defined. To provide the in vivo evidence that STAT3 participates in osteoclast differentiation and bone metabolism, we generated an osteoclast-specific Stat3 deletion mouse model (Stat3 fl/fl; Ctsk-Cre) and analyzed its skeletal phenotype. Micro-CT scanning and 3D reconstruction implied increased bone mass in the conditional knockout mice. H&E staining, calcein and alizarin red double staining, and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect bone metabolism. In short, this protocol describes some canonical methods and techniques to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.

Introduction

Skeletal bone is the main load-bearing organ of the human body and is under pressure from both the internal and external environment during walking and exercise1. Throughout one’s life, bones continuously go through self-renewal, which is balanced by osteoblasts and osteoclasts. The process of osteoclasts clearing old bones and osteoblasts forming new bone maintains the homeostasis and mechanical function of the skeletal system2. Disturbance in the balance may induce bone metabolic diseases, such as osteoporosis. Osteoporosis, which is caused by excess osteoclastic activity, is globally prevalent and causes substantial economic losses to society2,3,4. According to the limited number of drugs available for osteoporosis treatment and their risk of adverse effects4, it is important to unveil the details of osteoclast formation and activity.

Osteoclasts derived from the monocyte/macrophage hematopoietic lineage have multiple nuclei (may have 2 to 50 nuclei) and are large (usually greater than 100 μm in diameter)2. Although the exploration of mechanisms and the screening of drugs for osteoclastic disorders have been widely improved via in vitro osteoclast culture, the complicated organic reactions make in vivo evidence indispensable for the targeted therapy. Due to genetic and pathophysiological similarities between mice and humans, genetically engineered mouse models are commonly used for studying the mechanisms and the pharmaceutical treatments of human disease in vivo6. The Cre-loxP system is a widely-used technology for mouse gene editing and has enabled researchers to investigate gene functions in a tissue-/cell-specific manner5. Cathepsin K (CSTK) is a cysteine protease secreted by osteoclasts that can degrade bone collagen8. It is well accepted that CTSK is selectively expressed in mature osteoclasts; therefore, Ctsk-Cre mice are considered to be a useful tool for functional studies of osteoclasts and has been used6.

The signal transducer and activator of transcription (STAT) family is classical and highly significant in immunity and cancer progression and development7,8. Among seven STATs, STAT3 is reported to be the most relevant to bone homeostasis9,10. Several in vivo studies have reported that specific inactivation of STAT3 in osteoblasts decreases bone formation9,10. Nevertheless, solid evidence regarding the participation of STAT3 in osteoclast formation and bone metabolism in vivo is still limited. Recently, we provided in vivo evidence with an osteoclast-specific Stat3 deletion mouse model (Stat3fl/fl; Ctsk-Cre, hereafter called Stat3Ctsk) that STAT3 participates in osteoclast differentiation and bone metabolism11. In the present study, we describe the methods and protocols that we used to analyze the changes in bone mass, bone histomorphology, and bone anabolism and catabolism of the Stat3Ctsk mice in order to study the influence of osteoclast-specific STAT3 deletion on bone homeostasis.

Protocol

All methods relating to the animals described here were approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiaotong University School of Medicine.

1. Breeding of osteoclast specific Stat3 deletion mice

NOTE: Stat3fl/fl mice were obtained commercially. Ctsk-Cre mice were provided by S. Kato (University of Tokyo, Tokyo, Japan12). The mice were bred and maintained under specific pathogen-free (SPF) conditions in the institutional animal facility under standardized conditions.

  1. Pair a sexually mature male mouse with two female mice of the same age. After 18 days, check daily checks for newborns. Separate the pregnant female mice and keep it alone if needed. Change male mice among different breeding cages if the female mice were not pregnant within 1 month of the pairing.
  2. Cross Stat3fl/fl mice to Ctsk-Cre mice (F0). Clip the tails for genotyping and keep the male Stat3fl/+; Ctsk-Cre mice until they are sexually mature, which is around 6 weeks of age (F1). Use the following primers: Stat3 F-TTGACCTGTGCTCCTACAAAAA; Stat3 R-CCCTAGATTAGGCCAGCACA; Ctsk-cre F-GAACGCACTGATTTCGACCA; Ctsk-cre R-GCTAACCAGCGTTTTCGTTC.
  3. Cross 6-week-old male Stat3fl/+; Ctsk-Cre mice with female Stat3fl/fl mice. Clip the tails for genotyping and keep the male Stat3 fl/fl; Ctsk-Cre mice until they are sexually mature, which is around 6 weeks of age (F2).
  4. Cross 6-week-old male Stat3 fl/fl; Ctsk-Cre mice with female Stat3fl/fl mice (F3). Clip the tails for genotyping and replace the old breeding mice with younger mice in time (F3+N).

2. Specimen collection

  1. Euthanize six pairs of 8-week old male Stat3fl/fl and Stat3Ctsk littermate mice separately with carbon dioxide asphyxiation.
    NOTE: The CO2 flow rate displaces 30% of the cage volume per minute (e.g., for 45 cm x 30 cm x 30 cm cage the CO2 flow rate is 40 L/min).
  2. Place the mice in a supine position. Dislocate the bilateral hip joints gently by hand. Use ophthalmic scissors to cut off the skin vertically from the distal tibia and then dissect the entire skin from the hind limb.
  3. Cut off the articular ligament of the right hip joint and knee joint with scissors to separate the hind limb. Cut the trochanter and the junction of the fibula and then immerse the hind limb in 4% paraformaldehyde. Keep the right hind limbs for step 3. Appropriately cut the bone at both ends to fully immerse and fix the bone marrow with 4% paraformaldehyde.
  4. Cut the articular ligament of the left hip joint and knee joint with scissors, gently remove the soft tissue, and carefully separate the tibia and femur. Immerse the tibia and femur separately in 75% ethanol. Keep the femora for step 4 and tibiae for step 6. Ensure to keep the trochanter intact.

3. Paraffin section preparation

  1. Fix the right hind limb in 4% paraformaldehyde at 4 °C for 48 h.
  2. Decalcify: Gently wash the specimens with 1x PBS for 10 min 3 times. Decalcify the specimens in 15% EDTA (150 g EDTA in 800 mL of ddH2O and 100 mL of 10x PBS) with an ultrasonic decalcifier for 3 to 4 weeks until the bones can be bent. Replace with fresh decalcifying fluid every other day.
  3. Gently wash the specimens 3x with 1x PBS and then immerse them in 75% ethanol at 4 °C overnight.
  4. Dehydrate: On the second day, sequentially immerse specimens in 95% ethanol, 100% ethanol, and xylene, each for 1 h twice.
  5. Immerse specimens in 1/2 xylene 1/2 paraffin for 30 min. Immerse the specimens in paraffin at 65 °C overnight.
  6. Embed: Select a suitable embedding tank for embedding. Place the tibia uniformly underneath. Place the femur and tibia at a 90° angle. After the paraffin has fully cooled and solidified, remove it from the embedding tank. Number the specimens and store them at -20 °C overnight.
  7. Cut 5 μm thick sections continuously using the microtome. Cut 20–40 sections. Spread the sections on 37 °C water, adhere them to microscope slides, and bake at 42 °C overnight.

4. Micro-CT scanning and analysis

  1. Scan the left femora with a micro-CT scanner. Resolution: 10 μm; Voltage: 70 kV; Current: 114 μA; Fliter: 0.5 mm Al; Rotation step: 0.5°.
  2. Reconstruct 3D images of the cortical bone and trabecular bone using the scanner’s supporting software following manufacturer’s instruction. ROIs are in a total 1 mm width of trabecular bone close to the distal growth plate and in a total 1 mm wide section of cortical bone in the middle of the femora.
  3. Calculate the quantitative microarchitecture parameters: bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and cortical bone thickness (Ct.Th.).

5. TRAP staining

  1. Bake the paraffin sections at 65 °C for 30 min.
  2. Dewax: Immerse the sections in xylene for 10 min. Perform this step 3x with fresh xylene.
  3. Rehydrate: Immerse the sections sequentially in 100% ethanol, 95% ethanol, 70% ethanol, and ddH2O, each for 5 min twice.
  4. Prepare the staining solution using the TRAP staining kit following the manufacturer’s instructions and warm to 37 °C.
    NOTE: TRAP staining solution should be freshly prepared immediately before every assay.
  5. Add 50–100 μL staining solution to each sample and incubate in a 37 °C humid chamber for 20–30 min. Check the staining status of the osteoclasts under a light microscope every 5 min until red multinucleated osteoclasts can be seen. End the reaction with ddH2O.
  6. Counterstain in hematoxylin solution for 30 s. Create a stable blue color by immersion in 1% ammonia solution for 1 min. Rinse in slowly running tap water.
  7. Mount the sections with coverslips using neutral balsam and dry overnight.
  8. Capture 3–5 fields of interest by a microscope. Analyze the trabecular perimeter by Image J: measure the length of scale bar (Ls) using the ‘straight line’ tool as L1, then measure the length of trabecular perimeter using the ‘segmented line’ tool as L2, the physical length (Lp)= Ls*L2 /L1). Count the number of TRAP-positive cells with more than three nuclei.

6. Calcein and alizarin red double labeling

  1. Specimen preparation: Intraperitoneally inject 20 mg/kg calcein (1 mg/mL in 2% NaHCO3 solution) on day 0, and 25 mg/kg alizarin red S (AL, 2 mg/mL in H2O) on day 4. Sacrifice mice on day 7. Carefully disassociate the tibiae and fix in 4% paraformaldehyde at 4 °C for 48 h.
  2. Dehydrate: After fixation, gently wash the tibiae 3x with 1x PBS. Sequentially immerse the specimens in 95% ethanol, 100% ethanol, and xylene for 5 min twice separately.
  3. Immerse the specimens in acetone for 12 h, in 1/2 acetone 1/2 resin for 2 h, and in pure resin in a drying oven overnight.
    NOTE: The resin was prepared by commercially available resin (e.g., Embed 812 Resin) according to the manufacturer’s instructions.
  4. Embed: Add pure resin into a suitable silica gel embedding tank and place the specimens gently to avoid bubbles. Polymerize the resin in a drying oven at 60 °C for 48 h.
  5. Cut the specimens into 5 μm thick sections continuously with a rotary microtome. Store the rest of the samples with desiccant at room temperature.
  6. Adhere the sections with tweezers in a drop of 75% alcohol. Mount the sections with coverslips using neutral balsam. Capture red and green fluorescence labeling with a fluorescence microscope.
  7. Measure the width between two labeling lines (Ir.L.Wi), single-labeled trabecular perimeter (sL.Pm), double-labeled trabecular perimeter (dL.Pm), and total trabecular perimeter (Tb.Pm). Calculate the mineral apposition rate (MAR) and bone formation rate (BFR/BS). MAR = Ir.L.Wi/interval days. BFR/BS= (dL.Pm±sL.Pm/2)*MAR/Tb.Pm*100 %.

Results

Using the present protocol, osteoclast specific Stat3 deletion mice were generated to study the influence of STAT3 deletion on osteoclast differentiation. Stat3Ctsk mice and their wildtype (WT) littermates were bred and kept after genotyping. Bone marrow macrophages were isolated and cultured into osteoclasts, and STAT3 deletion in Stat3Ctsk mice was demonstrated (Figure 1).

Femora reconstruction a...

Discussion

Genetically engineered mouse models are commonly used for studying the mechanism and pharmaceutical treatment of human disease13. Ctsk-Cre mice have been widely used for functional studies of osteoclasts6. The present study described the protocols of the methods to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.

Histological analysis is the best intuitive method to detect bone metabolis...

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Prof. Weiguo Zou and S. Kato for reagents and mice and the members of the Zou laboratory for useful discussions. We also thank the Laboratory for Digitized Stomatology and Research Center for Craniofacial Anomalies of Shanghai Ninth People's Hospital for assistance. This work was supported in part by grants from the National Natural Science Foundation of China (NSFC) [81570950,81870740,81800949], Shanghai Summit & Plateau Disciplines, the SHIPM-mu fund from the Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine [JC201809], the Incentive Project of High-Level Innovation Team for Shanghai Jiao Tong University School of Medicine, the Cross-disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai JiaoTong university School of Medicine [JYJC201902]. And L.J. is a scholar of the Outstanding Youth Medical Talents, Shanghai "Rising Stars of Medical Talent" Youth Development Program and the “Chen Xing” project from Shanghai Jiaotong University.

Materials

NameCompanyCatalog NumberComments
4% Paraformaldehyde solutionSangon biotech Co., Ltd.E672002
AcetoneShanghai Experimental Reagent Co., Ltd.80000360
AlizarinSigma-AldrichA5533
Ammonia solutionShanghai Experimental Reagent Co., Ltd.
CalceinSigma-AldrichC0875
Ctsk-Cre micea gift from S. Kato, University of Tokyo, Tokyo, Japan
DDSAElectron Microscopy Sciences13710
DeCa RapidlyDecalcifierPro-CureDX1100
DMP-30Electron Microscopy Sciences13600
EDTAShanghai Experimental Reagent Co., Ltd.60-00-4
EMBED 812 RESINElectron Microscopy Sciences14900
fluorescence microscopeOlympusIX73
Hematoxylin solutionBeyotime BiotechanologyC0107
Micro-CTScanco Medical AGμCT 80
NaHCO3Shanghai Experimental Reagent Co., Ltd.10018918
Neutral balsamSangon biotech Co., Ltd.E675007
NMAElectron Microscopy Sciences19000
ParaffinSangon biotech Co., Ltd.A601889
rotary microtomeLeicaRM2265
Stat3fl/fl miceGemPharmatech Co., LtdD000527
TRAP staining kitSigma-Aldrich387A
xyleneShanghai Experimental Reagent Co., Ltd.1330-20-7

References

  1. Zaidi, M. Skeletal remodeling in health and disease. Nature Medicine. 13 (7), 791-801 (2007).
  2. Boyle, W. J., Simonet, W. S., Lacey, D. L. Osteoclast differentiation and activation. Nature. 423 (6937), 337-342 (2003).
  3. Cummings, S. R., Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet. 359 (9319), 1761-1767 (2002).
  4. Black, D. M., Rosen, C. J. Clinical Practice. Postmenopausal Osteoporosis. New England Journal of Medicine. 374 (3), 254-262 (2016).
  5. Kos, C. H. Cre/loxP system for generating tissue-specific knockout mouse models. Nutrition reviews. 62 (6), 243-246 (2004).
  6. Elefteriou, F., Yang, X. Genetic mouse models for bone studies-Strengths and limitations. Bone. 49 (6), 1242-1254 (2011).
  7. Hirano, T., Ishihara, K., Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19 (21), 2548-2556 (2000).
  8. Yu, H., Lee, H., Herrmann, A., Buettner, R., Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer. 14 (11), 736-746 (2014).
  9. Itoh, S., et al. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone. 39 (3), 505-512 (2006).
  10. Zhou, H., et al. Osteoblast/osteocyte-specific inactivation of Stat3 decreases load-driven bone formation and accumulates reactive oxygen species. Bone. 49 (3), 404-411 (2011).
  11. Yang, Y., et al. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. Journal of Biological Chemistry. 294 (42), 15395-15407 (2019).
  12. Nakamura, T., et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 130 (5), 811-823 (2007).
  13. Kim, H., Kim, M., Im, S. K., Fang, S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory animal research. 34 (4), 147-159 (2018).
  14. Minkin, C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcified Tissue International. 34 (3), 285-290 (1982).
  15. Vaaraniemi, J., et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. Journal of Bone and Mineral Research. 19 (9), 1432-1440 (2004).
  16. Ljusberg, J., et al. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. The Journal of Biological Chemistry. 280 (31), 28370-28381 (2005).
  17. Janckila, A. J., Takahashi, K., Sun, S. Z., Yam, L. T. Naphthol-ASBI phosphate as a preferred substrate for tartrate-resistant acid phosphatase isoform 5b. Journal of Bone and Mineral Research. 16 (4), 788-793 (2001).
  18. Janckila, A. J., Li, C. Y., Lam, K. W., Yam, L. T. The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations. American Journal of Clinical Pathology. 70 (1), 45-55 (1978).
  19. Janckila, A. J., Simons, R. M., Yam, L. T. Alternative immunoassay for tartrate-resistant acid phosphatase isoform 5b using the fluorogenic substrate naphthol ASBI-phosphate and heparin. Clinica Chimica Acta: International Journal of Clinical Chemistry. 347 (1-2), 157-167 (2004).
  20. Janckila, A. J., Yam, L. T., Li, C. Y. Immunoalkaline phosphatase cytochemistry. Technical considerations of endogenous phosphatase activity. American Journal of Clinical Pathology. 84 (4), 476-480 (1985).
  21. Solberg, L. B., et al. Increased tartrate-resistant Acid phosphatase expression in osteoblasts and osteocytes in experimental osteoporosis in rats. Calcified Tissue International. 94 (5), 510-521 (2014).
  22. Tambutté, E., et al. Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proceedings. Biological Sciences. 279 (1726), 19-27 (2012).
  23. Han, Y., et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. Journal of Clinical Investigation. 130 (5), 1895-1909 (2019).
  24. Dai, Q., et al. mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death and Differentiation. 24 (11), 1886-1899 (2017).
  25. Sun, J., et al. Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Research. 6, 14 (2018).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Stat3 DeletionMouse ModelSkeletal Phenotype AnalysisGenetically Engineered MiceSkeletal Tissue ResearchAnimal ExperimentsHind Limb DissectionParaffin SectioningMicro CT ScanningCalcein LabelingAlizarin Red LabelingDecalcification ProcessEmbedding Specimens

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved