Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a canonical method to understand the critical genes controlling osteoclast activity in vivo. This method uses a transgenic mouse model and some canonical techniques to analyze skeletal phenotype.

Abstract

Transgenic mouse models are powerful for understanding the critical genes controlling osteoclast differentiation and activity, and for studying mechanisms and pharmaceutical treatments of osteoporosis. Cathepsin K (Ctsk)-Cre mice have been widely used for functional studies of osteoclasts. The signal transducer and activator of transcription 3 (STAT3) is relevant in bone homeostasis, but its role in osteoclasts in vivo remains poorly defined. To provide the in vivo evidence that STAT3 participates in osteoclast differentiation and bone metabolism, we generated an osteoclast-specific Stat3 deletion mouse model (Stat3 fl/fl; Ctsk-Cre) and analyzed its skeletal phenotype. Micro-CT scanning and 3D reconstruction implied increased bone mass in the conditional knockout mice. H&E staining, calcein and alizarin red double staining, and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect bone metabolism. In short, this protocol describes some canonical methods and techniques to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.

Introduction

Skeletal bone is the main load-bearing organ of the human body and is under pressure from both the internal and external environment during walking and exercise1. Throughout one’s life, bones continuously go through self-renewal, which is balanced by osteoblasts and osteoclasts. The process of osteoclasts clearing old bones and osteoblasts forming new bone maintains the homeostasis and mechanical function of the skeletal system2. Disturbance in the balance may induce bone metabolic diseases, such as osteoporosis. Osteoporosis, which is caused by excess osteoclastic activity, is globally prevalent and causes substan....

Protocol

All methods relating to the animals described here were approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiaotong University School of Medicine.

1. Breeding of osteoclast specific Stat3 deletion mice

NOTE: Stat3fl/fl mice were obtained commercially. Ctsk-Cre mice were provided by S. Kato (University of Tokyo, Tokyo, Japan12). The mice were bred and maintained under sp.......

Representative Results

Using the present protocol, osteoclast specific Stat3 deletion mice were generated to study the influence of STAT3 deletion on osteoclast differentiation. Stat3Ctsk mice and their wildtype (WT) littermates were bred and kept after genotyping. Bone marrow macrophages were isolated and cultured into osteoclasts, and STAT3 deletion in Stat3Ctsk mice was demonstrated (Figure 1).

Femora reconstruction a.......

Discussion

Genetically engineered mouse models are commonly used for studying the mechanism and pharmaceutical treatment of human disease13. Ctsk-Cre mice have been widely used for functional studies of osteoclasts6. The present study described the protocols of the methods to analyze skeletal phenotype and to study the critical genes controlling osteoclast activity in vivo.

Histological analysis is the best intuitive method to detect bone metabolis.......

Acknowledgements

We thank Prof. Weiguo Zou and S. Kato for reagents and mice and the members of the Zou laboratory for useful discussions. We also thank the Laboratory for Digitized Stomatology and Research Center for Craniofacial Anomalies of Shanghai Ninth People's Hospital for assistance. This work was supported in part by grants from the National Natural Science Foundation of China (NSFC) [81570950,81870740,81800949], Shanghai Summit & Plateau Disciplines, the SHIPM-mu fund from the Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine [JC201809], the Incentive Project of High-Level Innovation Team ....

Materials

NameCompanyCatalog NumberComments
4% Paraformaldehyde solutionSangon biotech Co., Ltd.E672002
AcetoneShanghai Experimental Reagent Co., Ltd.80000360
AlizarinSigma-AldrichA5533
Ammonia solutionShanghai Experimental Reagent Co., Ltd.
CalceinSigma-AldrichC0875
Ctsk-Cre micea gift from S. Kato, University of Tokyo, Tokyo, Japan
DDSAElectron Microscopy Sciences13710
DeCa RapidlyDecalcifierPro-CureDX1100
DMP-30Electron Microscopy Sciences13600
EDTAShanghai Experimental Reagent Co., Ltd.60-00-4
EMBED 812 RESINElectron Microscopy Sciences14900
fluorescence microscopeOlympusIX73
Hematoxylin solutionBeyotime BiotechanologyC0107
Micro-CTScanco Medical AGμCT 80
NaHCO3Shanghai Experimental Reagent Co., Ltd.10018918
Neutral balsamSangon biotech Co., Ltd.E675007
NMAElectron Microscopy Sciences19000
ParaffinSangon biotech Co., Ltd.A601889
rotary microtomeLeicaRM2265
Stat3fl/fl miceGemPharmatech Co., LtdD000527
TRAP staining kitSigma-Aldrich387A
xyleneShanghai Experimental Reagent Co., Ltd.1330-20-7

References

  1. Zaidi, M. Skeletal remodeling in health and disease. Nature Medicine. 13 (7), 791-801 (2007).
  2. Boyle, W. J., Simonet, W. S., Lacey, D. L. Osteoclast differentiation and activation. Nature. 423 (6937), 337-342 (2003).

Explore More Articles

Skeletal Phenotype AnalysisGenetically Engineered Mouse ModelHind LimbParaffin SectioningMicro CT ScanningCalcein And Alizarin Red Double LabelingDecalcificationParaffin Embedding

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved