Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the implantation of human coronary stents into the abdominal aorta of rats with an apoE-/- background using a trans-femoral access. Compared with other animal models, murine models carry the advantages of high throughput, reproducibility, ease of handling and housing, and a broad availability of molecular markers.

Abstract

Percutaneous coronary intervention (PCI), combined with the deployment of a coronary stent, represents the gold standard in interventional treatment of coronary artery disease. In-stent restenosis (ISR) is determined by an excessive proliferation of neointimal tissue within the stent and limits the long-term success of stents. A variety of animal models have been used to elucidate pathophysiological processes underlying in-stent restenosis (ISR), with the porcine coronary and the rabbit iliac artery models being the most frequently used. Murine models provide the advantages of high throughput, ease of handling and housing, reproducibility, and a broad availability of molecular markers. The apolipoprotein E deficient (apoE-/- ) mouse model has been widely used to study cardiovascular diseases. However, stents must be miniaturized to be implanted into mice, involving important changes of their mechanical and (potentially) biological properties. The use of apoE-/- rats can overcome these shortcomings as apoE-/- rats allow for the evaluation of human-sized coronary stents while at the same time providing an atherogenic phenotype. This makes them an excellent and reliable model to investigate ISR after stent implantation. Here, we describe, in detail, the implantation of commercially available human coronary stents into the abdominal aorta of rats with an apoE-/- background using a trans-femoral access.

Introduction

Percutaneous coronary intervention (PCI), combined with the deployment of a coronary stent, represents the gold standard in interventional treatment of coronary artery disease1. The long-term success of stents, however, can be limited by the occurrence of in-stent restenosis (ISR) that is determined by an excessive proliferation of neointimal tissue within the stent2,3. ISR may require a re-intervention either with coronary artery bypass or re-PCI. A variety of animal models have been suggested for the study of ISR, each of them featuring advantages and shortcomings. The major drawbacks....

Protocol

The experiments were performed in accordance with the German animal welfare law (TSchG) and Directive 2010/63/EU pertaining to the protection of animals used for scientific purposes. The official approval for this study was granted by the Governmental Animal Care and Use Committee (Protocol No.: AZ 87-51.04.2010.A065; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany). The study protocol complied with the Guide for the Care and Use of Laboratory Animals. Postoperative pai.......

Representative Results

This protocol describes stent implantation in the abdominal aorta of rats using a trans-femoral access route (Figure 1). The first central point of this animal model is that it allows for the deployment of human-sized coronary stents. A commercially available crimped and balloon-mounted coronary stent can be placed into the abdominal aorta of rats. Thus, in addition, the same principle of stent deployment as in humans can be applied. Another advantage of the use of rats is the availability o.......

Discussion

This protocol describes the implantation of human-sized coronary stents into the abdominal aorta of apoE-/- rats. Several technical points are worth emphasizing. First, a mismatch between the stent size and the size of the aorta should be avoided. Placing too small a stent can lead to stent malapposition, whereas implantation of a stent that is too large for the aorta can cause overstretch, tearing, and injury of the vessel. Therefore, we recommend using stents between 2.0 and 2.5 mm in diameter, and to keep i.......

Acknowledgements

We would like to thank Mrs. Angela Freund for her invaluable technical assistance with embedding and slides production. We would also like to thank Mr. Tadeusz Stopinski at the Institute for Laboratory Animal Science & Experimental Surgery for his insightful help with the veterinary work.

....

Materials

NameCompanyCatalog NumberComments
Diet
SNIFF High Fat diet + Clopidogrel (15 mg/kg)SNIFF Spezialdiäten GmbH, Soestcustom preparedWestern Diet
Drugs and Anesthetics
BuprenorphineEssex Pharma997.00.00
ISOFLO (Isoflurane Vapor) vaporiserEickemeyer4802885
IsofluraneForene AbbottB 506
Isotonic (0.9%) NaCl solutionDeltaSelect GmbHPZN 00765145
Ringer's lactate solutionBaxter Deutschland GmbH3775380
(S)-ketamineCEVA Germany
XylazineMedistar Germany
Consumable supplies
10 mL syringesBD Plastipak4606108V
2 mL syringesBD Plastipak4606027V
6-0 prolene sutureETHICONN-2719K
4-0 silk sutureSeraflexIC 158000
Bepanthen Eye and Nose OintmentBayer Vital GmbH6029009.00.00
Cotton Gauze swabsFuhrmann GmbH32014
Durapore silk tape3M1538-1
Poly-Alcohol Skin Desinfection SolutionAntiseptica GmbH72PAH200
Sterican needle 18 GB. Braun304622
Sterican needle 27 3/4 GB.Braun4657705
Tissue Papercommercially available
Surgical instruments
Graefe forceps curved x1Fine Science Tools Inc.11151-10
Graefe forceps straightFine Science Tools Inc.11050-10
Needle holder MathieuFine Science Tools Inc.12010-14
ScissorsFine Science Tools Inc.14074-11
Semken forcepsFine Science Tools Inc.11008-13
Small surgical scissors curvedFine Science Tools Inc.14029-10
Small surgical scissors straightFine Science Tools Inc.14028-10
Standard pattern forcepsFine Science Tools Inc.11000-12
Vannas spring scissorsFine Science Tools Inc.15000-08
Equipment
Dissecting microscopeLeica MZ9
Temperature controlled heating padSygonix26857617
Equipment for stent implantation
Drug-eluting stent Xience 2,25mm x 8mmAbbott Vascular USA1009544-18
Guide wire Fielder XT PTCA guide wire: 0.014" x 300cmASAHI INTECC CO., LTD JapanAGP140302
Inflation syringe systemAbbott 20/30 Priority Pack1000186
Tissue processing and analysis
30% H2O2Roth9681Histology
EthanolRothK928.1Histology
Giemsas Azur-Eosin-MethylenblauMerck109204Histology
Graphic Drawing TabletWACOM Europe GmbHCTL-6100WLK-S
Roti Histofix, Formaldehyd 4% bufferedRothP087Histology
Technovit 9100Morphisto12225.K1000Histology

References

  1. Patel, M. R., et al. ACC/AATS/AHA/....

Explore More Articles

Rat Abdominal AortaTrans femoral AccessCoronary Stent ImplantationMinimally Invasive ProcedureVascular PathologyOptical Coherence TomographyHistological AnalysisAnesthetized RatFemoral ArteryArteriotomyGuide WireBalloon mounted Coronary StentAortic BifurcationBalloon Catheter Inflation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved