A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Neural degeneration in both eyes and brain as a result of diabetes can be observed through behavioral tests carried out on rodents. The Y-maze, a measure of spatial cognition, and the optomotor response, a measure of visual function, both provide insight into potential diagnoses and treatments.
The optomotor response and the Y-maze are behavioral tests useful for assessing visual and cognitive function, respectively. The optomotor response is a valuable tool to track changes in spatial frequency (SF) and contrast sensitivity (CS) thresholds over time in a number of retinal disease models, including diabetic retinopathy. Similarly, the Y-maze can be used to monitor spatial cognition (as measured by spontaneous alternation) and exploratory behavior (as measured by a number of entries) in a number of disease models that affect the central nervous system. Advantages of the optomotor response and the Y-maze include sensitivity, speed of testing, the use of innate responses (training is not needed), and the ability to be performed on awake (non-anesthetized) animals. Here, protocols are described for both the optomotor response and the Y-maze and examples of their use shown in models of Type I and Type II diabetes. Methods include preparation of rodents and equipment, performance of the optomotor response and the Y-maze, and post-test data analysis.
Over 463 million people live with diabetes, making it one of the largest global disease epidemics1. One of the serious complications that arises from diabetes is diabetic retinopathy (DR), a leading cause of blindness for working-age American adults2. In the next 30 years, the percentage of the population at risk for DR is projected to double, so it is crucial to find new ways of diagnosing DR in its earlier stages to prevent and mitigate DR development3. DR has conventionally been thought to be a vascular disease4,5,6. However, now with evidence of neuronal dysfunction and apoptosis in the retina that precedes vascular pathology, DR is defined to have neuronal and vascular components4,5,6,7,8,9. One way to diagnose DR would be to examine neural abnormalities in the retina, a tissue that may be more vulnerable to oxidative stress and metabolic strain from diabetes than other neural tissue10.
Declines in cognitive and motor function also occur with diabetes and are often correlated with retinal changes. Older individuals with Type II diabetes portray worse baseline cognitive performance and show more exacerbated cognitive decline than control participants11. Additionally, the retina has been established as an extension of the central nervous system and pathologies can manifest in the retina12. Clinically, the relationship between retina and brain has been studied in the context of Alzheimer’s and other diseases but is not commonly explored with diabetes12,13,14,15,16. Changes in the brain and retina during the progression of diabetes can be explored using animal models, including the STZ rat (a model of Type I diabetes in which the toxin, streptozotocin or STZ, is used to damage pancreatic beta cells) and the Goto-Kakizaki rat (a polygenic model of Type II diabetes in which animals develop hyperglycemia spontaneously at around 3 weeks of age). In this protocol, a description for the Y-maze and the optomotor response to assess cognitive and visual changes in diabetic rodents, respectively, is provided. The optomotor response (OMR) assesses spatial frequency (similar to visual acuity) and contrast sensitivity by monitoring characteristic reflexive head tracking movements to gauge visual thresholds for each eye17. Spatial frequency refers to the thickness or fineness of the bars, and contrast sensitivity refers to how much contrast there is between the bars and the background (Figure 1E). Meanwhile, the Y-maze tests short-term spatial memory and exploratory function, observed through spontaneous alternations and entries through the arms of the maze.
Both tests can be performed in awake, non-anesthetized animals and have the advantage of capitalizing on innate responses of the animals, meaning that they do not require training. Both are relatively sensitive, in that they can be used to detect deficits early in the progression of diabetes in rodents, and reliable, in that they produce results that correlate with other visual, retinal, or behavioral tests. Additionally, using the OMR and the Y-maze in conjunction with tests such as electroretinogram and optical coherence tomography scans can provide information on when retinal, structural, and cognitive changes develop relative to each other in disease models. These investigations could be useful in identifying neural degenerations that occur due to diabetes. Ultimately, this could lead to new diagnostic methods that effectively identify DR in early stages of progression.
The OMR and the Y-maze systems used to develop this protocol are described in the Table of Materials. Previous research on the OMR, by Prusky et al.18, and the Y-maze, by Maurice et al.19, was used as the starting point to develop this protocol.
All procedures were approved by the Atlanta Veterans Affairs Institutional Animal Care and Use Committee and conformed to the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications, 8th edition, updated 2011).
1. The optomotor response (OMR)
2. The Y-maze
The OMR is considered successful if spatial frequency and contrast sensitivity thresholds can be obtained from a rodent. Here, the use of the OMR to assess spatial frequency is illustrated in naïve control Brown-Norway and Long-Evans rats, both young (3–6 months) and aged (9–12 months). Brown-Norway rats typically show a higher baseline spatial frequency than Long-Evans rats. Additionally, an aging effect on spatial frequency was observed in the Long-Evans rats (Figure 3A). Data were an...
The OMR and the Y-maze allow for the non-invasive assessment of visual function and cognitive function deficits in rodents over time. In this protocol, the OMR and the Y-maze were demonstrated to track visual and cognitive deficits in rodent models of diabetes.
Critical steps in the protocol
The OMR
Some important points to consider when performing the OMR to assess visual function are the testing parameters used, experim...
The authors have nothing to disclose.
This work was supported by the Department of Veterans Affairs Rehab R&D Service Career Development Awards (CDA-1, RX002111; CDA-2; RX002928) to RSA and (CDA-2, RX002342) to AJF and the National Institutes of Health (NIH-NICHD F31 HD097918 to DACT and NIH-NIEHS T32 ES012870 to DACT) and NEI Core Grant P30EY006360.
Name | Company | Catalog Number | Comments |
OptoMotry HD | CerebralMechanics Inc. | OMR apparatus & software | |
Timer | Thomas Scientific | 810029AR | |
Y-Maze apparatus | San Diego Instruments | 7001-043 | Available specifically for rats |
An erratum was issued for: Behavioral Assessment of Visual Function via Optomotor Response and Cognitive Function via Y-Maze in Diabetic Rats. The author list was updated.
The author list was updated from:
Kaavya Gudapati*1,2, Anayesha Singh*1,3, Danielle Clarkson-Townsend1,4, Andrew J. Feola1,2, Rachael S. Allen1,2
1Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center,
2Department of Biomedical Engineering, Georgia Institute of Technology,
3Department of Neuroscience, Emory University,
4Gangarosa Department of Environmental Health, Emory University
* These authors contributed equally
to:
Kaavya Gudapati*1,2, Anayesha Singh*1,3, Danielle Clarkson-Townsend1,4, Stephen Q. Phillips1, Amber Douglass1, Andrew J. Feola1,2, Rachael S. Allen1,2
1Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center,
2Department of Biomedical Engineering, Georgia Institute of Technology,
3Department of Neuroscience, Emory University,
4Gangarosa Department of Environmental Health, Emory University
* These authors contributed equally
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved