Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol provides detailed and comprehensive methods for the isolation, culture, polarization, and measurement of the glycolytic metabolic state of live bone marrow-derived macrophages (BMDMs). This paper provides step-by-step instructions with realistic visual illustrations for workflow and glycolytic assessment of BMDMs in real-time.

Abstract

Macrophages are among the most important antigen-presenting cells. Many subsets of macrophages have been identified with unique metabolic signatures. Macrophages are commonly classified as M1-like (inflammatory) and M2-like (anti-inflammatory) subtypes. M1-like macrophages are pro-inflammatory macrophages that get activated by LPS and/or pro-inflammatory cytokines such as INF-γ, IL-12 & IL-2. M1-like polarized macrophages are involved in various diseases by mediating the host's defense to a variety of bacteria and viruses. That is very important to study LPS induced M1-like macrophages and their metabolic states in inflammatory diseases. M2-like macrophages are considered anti-inflammatory macrophages, activated by anti-inflammatory cytokines and stimulators. Under the pro-inflammatory state, macrophages show increased glycolysis in glycolytic function. The glycolytic function has been actively investigated in the context of glycolysis, glycolytic capacity, glycolytic reserve, compensatory glycolysis, or non-glycolytic acidification using extracellular flux (XF) analyzers.

This paper demonstrates how to assess the glycolytic states in real-time with easy-to-follow steps when the bone marrow-derived macrophages (BMDMs) are respiring, consuming, and producing energy. Using specific inhibitors and activators of glycolysis in this protocol, we show how to obtain a systemic and complete view of glycolytic metabolic processes in the cells and provide more accurate and realistic results. To be able to measure multiple glycolytic phenotypes, we provide an easy, sensitive, DNA-based normalization method for polarization assessment of BMDMs. Culturing, activation/polarization and identification of the phenotype and metabolic state of the BMDMs are crucial techniques that can help to investigate many different types of diseases.

In this paper, we polarized the naïve M0 macrophages to M1-like and M2-like macrophages with LPS and IL4, respectively, and measured a comprehensive set of glycolytic parameters in BMDMs in real-time and longitudinally over time, using extracellular flux analysis and glycolytic activators and inhibitors.

Introduction

Macrophages are one of the most critical cells of the innate immune system M1-like. They are involved in clearing infectious diseases, phagocytosis, antigen presentation, and inflammation regulation2. Furthermore, macrophages are required to regulate other immune cells via various cytokines they release3. There is a big spectrum in macrophage phenotypes4. Depending on the signals that macrophages are exposed to, they polarize toward different inflammatory and metabolic states5. Macrophages manifest metabolic alterations in various diseases, depending on what tissue the macr....

Protocol

Mice were humanely sacrificed according to Assessment and Accreditation of Laboratory Animal Care (AAALAC) and American Association for Laboratory Animal Science (AALAS) guidelines and using protocols approved by the Texas A&M University institutional animal care and use committee (IACUC).

1. Mice bone marrow harvest and culture of BMDMs

  1. Sacrifice mouse (6-10 weeks of age C57Bl/6 mice were in this protocol) and lay it on its ventral side, cut the skin and peritoneal layer and g.......

Representative Results

Glycolysis and mitochondrial oxidative phosphorylation are the two major ATP production pathways in the cells (Figure 4A). Some cells have the capability to switch between these two pathways to meet their energy demands. The conversion of glucose to pyruvate in the cytoplasm is called glycolysis. Pyruvate has two fates; it will either get converted to lactate or further metabolized through the TCA cycle and eventually through the electron transport chain (ETC.......

Discussion

As mentioned earlier, the extracellular flux analyzer machine can provide real-time information about two major energy-producing pathways of the cells by measuring OCR (oxygen consumption rate), an indicator of mitochondrial OXPHOS activity, and ECAR (extracellular acidification rate) which is an indicator of glycolysis. Macrophages can use both pathways, depending on their microenvironment. They can also switch their energy production pathways17,18. Understandin.......

Acknowledgements

We thank Ms. Joanna Rocha for editorial assistance. The work was partially supported by the National Institutes of Health (NIH) R01DK118334 (to Drs. Sun and Alaniz) and (NIH) R01A11064Z (to Drs. Jayaraman and Alaniz).

....

Materials

NameCompanyCatalog NumberComments
23G needlesVWRBD305145
2-mercaptoethanolLife Technologies21985023
50ml Conical TubeVWR21008-951
ACK lysis bufferThermo Fisher ScientificA1049201It can be lab-made
Agilent Seahorse XF glycolysis stress test kitAgilent Technologies103020-100
Agilent Seahorse XF Glycolysis Stress Test Kit User GuideAgilent Technologies103020-400
Agilent Seahorse XF Glycolytic Rate Assay KitAgilent Technologies103344-100
Agilent Seahorse XF Glycolytic Rate Assay Kit User GuideAgilent Technologies103344-100
Alexa Fluor 488 anti-mouse CD206 (MMR) AntibodyBioLegend141710
anti-mouse CD11b eFluor450 100ugeBioscience48-0112-82
BD 3ML - SYRINGEVWRBD309657Other syringes are acceptable too
Cell counter-Vi-CELL- XR Complete SystemBECKMAN COULTER Life Sciences731050Cells can be manually counted too
Cell Strainer-70µmVWR10199-656
CyQUANT Cell Proliferation Assay KitThermo Fisher ScientificC7026
F4/80 monoclonal antibody (BM8) pe-Cyanine7eBioscience25-4801-82
Fetal Bovine SerumLife Technologies16000-044
Flow cytometer: BD LSFRFortessa X-20BD656385
Kim WipesVWR82003-822
LPS-SM ultrapure (tlrl-smpls) 5 mgInvivogentlrl-smlps
MCSFPeprotech315-02
Murine IL-4Peprotech214-14
PE Rat Anti-Mouse CD38BD Biosciences553764
Penicillin-Streptomycin (10,000 U/mL)Life Technologies15140122
Petri Dish 100mm x 15 mmFisher ScientificF80875712
RPMI, Glutamax, HEPESInvitrogen72400-120
Seahorse Calibrant SolutionAgilent Technologies103059-000
Seahorse XF 200mM Glutamine SolutionAgilent Technologies103579-100
Seahorse XF Glycolytic Rate Assay KitAgilent Technologies103344-100
Seahorse XFe96 FluxPaksAgilent Technologies102416-100
XF Glycolysis Stress Test KitAgilent Technologies103020-100
XF RPMI Medium, pH 7.4 without phenol RedAgilent Technologies103336-100

References

  1. Rosowski, E. E. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Disease Models & Mechanisms. 13 (1), (2020).
  2. Martinez-Pomares, L., Gordon, S. . The Autoimmune Diseases

Explore More Articles

Bone Marrow derived MacrophagesMacrophage PolarizationM1 like MacrophagesM2 like MacrophagesGlycolytic FunctionExtracellular Flux AnalysisGlycolytic Activators And InhibitorsMetabolic Characterization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved