A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present an automated method for semi-quantitative determination of dopaminergic neuron number in the rat substantia nigra pars compacta.

Abstract

Estimation of the number of dopaminergic neurons in the substantia nigra is a key method in pre-clinical Parkinson's disease research. Currently, unbiased stereological counting is the standard for quantification of these cells, but it remains a laborious and time-consuming process, which may not be feasible for all projects. Here, we describe the use of an image analysis platform, which can accurately estimate the quantity of labeled cells in a pre-defined region of interest. We describe a step-by-step protocol for this method of analysis in rat brain and demonstrate it can identify a significant reduction in tyrosine hydroxylase positive neurons due to expression of mutant α-synuclein in the substantia nigra. We validated this methodology by comparing with results obtained by unbiased stereology. Taken together, this method provides a time-efficient and accurate process for detecting changes in dopaminergic neuron number, and thus is suitable for efficient determination of the effect of interventions on cell survival.

Introduction

Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by the presence of protein aggregates containing α-synuclein (α-syn) and the preferential loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc)1. Quantification of dopaminergic neuron number is a vital part of PD research as it permits the evaluation of the integrity of the nigrostriatal system, thus, providing an important endpoint to assess the effectiveness of potential disease-modifying therapeutics. Currently, the standard for quantification of cell number is unbiased stereological counting, which utilizes two-dimensional (2D) cross-sections of tissue to estimate volumetric features in three-dimensional (3D) structures2,3,4. Modern design-based stereological methods employ comprehensive random sampling procedures and apply counting protocols (known as probes) to avoid potential artifacts and systematic errors, allowing for reliable detection of differences only slightly greater than inter-animal variation5. While stereology provides a powerful analytical tool for in vivo histological studies, it is time intensive, assumes uniform specimen preparation, and requires validation at several steps, which can impact the efficiency increasingly required for pre-clinical translational investigation.

Recent technological advances in digital science make it possible to adopt novel applications for more efficient assessments of pathology without a stereomicroscope, while filling a need as a surrogate of unbiased stereology. These methods increase speed, reduce human error, and improve the reproducibility of stereological techniques6,7. HALO is one such image analysis platform for quantitative tissue analysis in digital pathology. It comprises a variety of different modules and reports morphological and multiplexed expression data on a cell-by-cell basis across entire tissue sections using pattern recognition algorithms. The cytonuclear FL module measures the immunofluorescent positivity of fluorescent markers in the nucleus or cytoplasm. This allows for reporting of the number of cells positive for each marker, and the intensity score for each cell. The module can be adapted to provide individual cell sizes and intensity measurements, although this feature is not required for quantification of dopaminergic neurons.

The aim of this study is to verify this method with a previously validated viral vector-based α-syn rat model of nigral neurodegeneration8,9,10. In this model, human mutant A53T α-syn is expressed in the SNpc by stereotactic injection of adeno-associated virus hybrid serotype 1/2 (AAV1/2), resulting in significant neurodegeneration over a period of 6 weeks. The contralateral uninjected SNpc may, in some studies, serve as an internal control for the injected side. More commonly, injection of AAV-Empty Vector (AAV-EV) in a control cohort of animals is used as a negative control. We present a step-by-step guide to estimate the density of dopaminergic neurons remaining in the injected SNpc after 6 weeks using an automated image analysis software (Figure 1).

Protocol

All procedures were approved by the University Health Network Animal Care Committee and performed in accordance with guidelines and regulations set by the Canadian Council on Animal Care.

1. Stereotactic injection

  1. Pair-house adult female Sprague-Dawley rats (250-280 g) in cages with wood bedding and ad lib access to food and water. Maintain the animal colony in a regular 12 h light/dark cycle (lights on 06:30) with constant temperature and humidity.
  2. Perform unilateral stereotactic injection of AAV directly to the SNpc on the right side of the brain (right or left side, according to the preferences of each lab) as previously described8,10. Inject 2 μL of AAV1/2 at a final titer of 3.4 x 1012 genomic particles/mL.

2. Brain sectioning and immunohistochemistry (IHC)

  1. Anaesthetize the rat with 5% isoflurane by placing in an anaesthetizing chamber for 3 min. Other approved methods may be used for this step after appropriate institutional review.
  2. Once the rat has reached a surgical plane of deep anesthesia, transfer it to a nose cone firmly affixed to a necropsy table. Secure the rat's fore-paws using tape and use toe pinch-response method to determine the depth of the anesthesia. The animal must be unresponsive before continuing.
  3. Make a lateral incision below the sternum and cut through the diaphragm along the entire length of the rib cage to expose the pleural cavity. Lift and clamp the sternum with a hemostat and place above the head.
  4. Clamp the heart using forceps and insert a butterfly needle connected to a perfusion pump into the posterior end of the left ventricle. Perfuse rat transcardially with 150 mL of heparinized saline, or until the eyes and skin are clear. Perfusion with 4% paraformaldehyde (PFA), instead of saline, may be preferred to facilitate immunostaining with certain antibodies or thinner brain sectioning.
  5. Once perfusion is complete, decapitate with a guillotine and extract the brain to a brain matrix, ventral surface facing up.
  6. Using a fresh razor blade, make a cut in the coronal plane 2 mm rostral to the optic chiasm. Slide the blade from side to side to avoid warping the brain while slicing.
  7. Immerse the posterior portion of the brain in a pre-labeled vial containing approximately 20 mL of 4% PFA for 48 h of post-fixation at room temperature. The anterior portion of the brain may be flash frozen in 2-methylbutane chilled to -42 °C before storage at -80 °C.
  8. After 48 h, transfer the fixed brains to a labeled vial containing 30% sucrose in phosphate buffered saline (PBS) and store at 4 °C until they sink (48-72 h).
  9. Prepare a microtome by placing dry ice in the trough of the specimen stage, followed by 100% ethanol. Once the stage has cooled, squeeze optimal cutting temperature (OCT) compound onto the stage until it forms a circle 2 cm in diameter and 0.5 cm thick. Once it has partially frozen, carefully lower the brain onto the mound of OCT, ensuring the striatal cutting surface remains parallel with the stage.
  10. Add more dry ice to the stage to help the brain to freeze. Once the brain has turned a cream color, clear the stage of dry ice.
  11. Poke a hole into the right side of the brain with a 25G needle to distinguish the right and left hemispheres. Take care not to pass the needle through anatomical structures of interest.
  12. Serially cut 40 μm sections in the coronal plane beginning at bregma -3.8 and ending at bregma -6.8.
  13. Store six series in labeled tubes with anti-freeze solution (40% PBS, 30% 2-ethoxyethanol, 30% glycerol). Each series should contain 12 brain sections.
  14. Select one set of sections for immunohistochemical staining, and wash off anti-freeze solution with 3 x 10 min washes in 0.2% PBS-T.
  15. Block for 1 h at RT with gentle nutation in blocking solution (10% normal goat serum (NGS), 2% bovine serum albumin (BSA) in 0.2% PBS-T). Follow this with incubation with rabbit anti-tyrosine hydroxylase (TH) antibody (1:500) and mouse anti-α-syn antibody (1:500) in 2% NGS in 0.2% PBS-T overnight at room temperature.
  16. Wash off primary antibody with 3 x 5 min washes in 0.2% PBS-T, followed by 1 h incubation with goat anti-rabbit Alexa Fluor 488 secondary antibody (1:500) and goat anti-mouse Alexa Fluor 555 secondary antibody in 2% NGS in 0.2% PBS-T. Ensure the sections are protected from light and nutating gently.
  17. Wash off secondary antibody with 3 x 5 min washes in 0.2% PBS-T and mount the complete set of sections on slides protected from light and dust using a narrow paintbrush. Coverslip with fluorescence mounting medium and seal with clear nail varnish.

3. Confocal microscopy and image acquisition

  1. Capture IHC images using software coupled to a confocal microscope at 10x magnification. Open the pinhole to 1.5 AU to capture a wide plane totaling ~1.5 μm and set the focus on the injected side of the brain.
  2. On the Acquisition tab, check the Tile Scan imaging option and set the dimensions to 10 x 4.
  3. Under the Acquisition Mode panel, set the Zoom to 1.1. This helps to avoid any obvious stitching marks between tile scan images.
  4. Set the Frame Size to 1024 x 1024 pixels and the Averaging to 2 to ensure high quality image acquisition.
  5. In the Channels panel, set track 1 to Alexa488 and track 2 to Alexa555.
  6. Load the slide onto the stage and choose a section with strong TH staining. Click on Live on the Acquisition panel.
  7. In the Channels panel, set the Laser Strength and Gain to levels that maximize signal and limit noise from the background. Use the range indicator to ensure that the signals are not overexposed (as indicated by a dark red overlay).
  8. Repeat the above step with multiple slides to ensure staining is consistent between slides as the laser strength/gain cannot be adjusted between slides.
  9. On the Acquisition tab, check the Positions box.
  10. At this point, you are ready to begin imaging. Using the eyepiece, choose the first section showing positive TH staining, set the focus at the point of interest (i.e., SNpc) and then move the stage to the midline of the section. This saves the position in the x, y, and z axes and will image a tile scan capturing the whole section.
  11. Repeat the above step for all sections throughout the SNpc giving a complete set of images of the SNpc. If detailed analysis of the uninjected side is required, steps 3.10 to 3.11 should be repeated by setting the focus on the uninjected side.

4. Image analysis and quantitation

  1. Separate image files using appropriate software and import image files to automated image analysis software.
  2. Define a region of interest by selecting the Pen annotation tool to draw an annotation around the SNpc.
    NOTE: In sections which have a large amount of dopaminergic neuron loss, temporarily increasing the emittance/absorption can help to clearly define the SNpc (Figure 2).
  3. Move to the Analysis tab and from the drop-down Analyze menu, select Real-Time Tuning. This opens a separate window on the section image allowing for real-time modification of analysis parameters (Figure 3).
  4. Under the Analysis Magnification section, select the appropriate image zoom.
  5. Under the Cell Detection section, select nuclear dye as the dye used for TH staining (Alexa Fluor 488).
  6. Adjust the Nuclear Contrast Threshold, Minimum Nuclear Intensity, Nuclear Segmentation Aggressiveness, and Nuclear Size settings while carefully watching the Real-Time Tuning window.
    NOTE: Accurate representation of each individual cell as a single cell in the Real-Time Tuning window is vital for accuracy. These settings are on an arbitrary scale depending on the software used, but correct adjustment is needed to allow the software to accurately differentiate between individual cells, and between cells and the background (Figure 3).
  7. Repeat this process with a minimum of 10 separate samples to ensure a uniform agreement of what constitutes a cell across different sections.
    NOTE: Additional cell markers (such as α-syn or NeuN) can be identified within the same analysis platform using the Marker 1 or Marker 2 sections on the analysis tab.
  8. Once an appropriate number of images have been sampled and Real-Time Tuning has been adjusted accordingly, save the analysis settings in the Settings Actions drop-down menu.
  9. Select all images to be analyzed and click on Analyze.
  10. Choose the analysis setting you have just saved and in the Region of Analysis window, check the Annotation Layer(s) box. Then, check Layer 1 and click on Analyze.
    NOTE: For a single brain, the analysis typically takes about 5 mins. The completed result will clearly show each item that has been counted as a cell (Figure 4).
  11. Once complete, export the summary analysis data for all sections. There is an option to export Object Analysis Data, which will give detailed data, including cell size of each individual cell detected. This dataset could be used to examine changes in cell size in response to a toxin/therapeutic.
  12. Add the Total Cells from each section analyzed per animal and the Total Analyzed Area (mm2). Divide the total number of cells by the total area analyzed to calculate the number of cells/mm2 in the SNpc for each rat

Results

By applying the above methods to brain tissue collected 6 weeks after AAV injections, we demonstrated that stereotactic injection of AAV expressing mutant A53T α-syn (AAV-A53T) in the SNpc of rat brain results in a significant reduction in the density of dopaminergic neurons compared to injection of empty vector AAV (AAV-EV) as a control (Figure 5A,B). The mean number of TH-positive neurons/mm2 in the SNpc of rats injected with AAV-EV was 276.2 ± 34.7, a...

Discussion

The reliable assessment of the integrity of the dopaminergic system in pre-clinical models of PD is critical to determine the effectiveness of potential disease-modifying therapeutics. Therefore, it is important to control and minimize potential confounds that may reduce the reliability and reproducibility of histopathological data. Careful quantitative outcomes can provide more information than qualitative or semi-quantitative descriptions alone. At the same time, we must recognize that constraints in time and resources...

Disclosures

The authors report no competing interests.

Acknowledgements

The authors would like to thank all the staff at the Advanced Optical Microscopy Facility (AOMF) at University Health Network for their time and assistance in developing this protocol.

Materials

NameCompanyCatalog NumberComments
A-Syn AntibodyThermoFisher Scientific32-8100
ABC EliteVector LabsPK-6102
Alexa Fluor 488 secondary antibodyThermoFisher ScientificA-11008
Alexa Fluor 555 secondary antibodyThermoFisher ScientificA-28180
Alkaline phosphatase-conjugated anti-rabbit igGJackson Immuno111-055-144
Biotinylated anti-mouse IgGVector LabsBA-9200
Bovine Serum AlbuminSigmaA2153
DAKO fluorescent mouting mediumAgilentS3023
HALO™Indica Labs
Histo-Clear IIDiamedHS202
ImmPACT DAB Peroxidase substrateVector LabsSK-4105
LSM880 Confocal MicroscopeZeiss
NeuN AntibodyMilliporeMAB377
Normal Goat SerumVector LabsS-1000-20
OCTTissue-Tek
ParaformaldehydeBioShopPAR070.1
Sliding microtomeLeicaSM2010 R
Stereo InvestigatorMBF Bioscience
SucroseBioShopSUC700
TH AntibodyThermoFisher ScientificP21962
VectaMount mounting mediumVector LabsH-5000
Vector Blue Alkaline Phosphatase substrateVector LabsSK-5300
Zen Black SoftwareZeiss
Zen Blue SoftwareZeiss

References

  1. Kalia, L. V., Lang, A. E. Parkinson's disease. Lancet. 386 (9996), 896-912 (2015).
  2. West, M. J., Slomianka, L., Gundersen, H. J. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record. 231 (4), 482-497 (1991).
  3. Nair-Roberts, R. G., et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience. 152 (4), 1024-1031 (2008).
  4. Golub, V. M., et al. Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration. Frontiers in Aging Neuroscience. 7, 196 (2015).
  5. Schmitz, C., Hof, P. R. Design-based stereology in neuroscience. Neuroscience. 130 (4), 813-831 (2005).
  6. Penttinen, A. M., et al. Implementation of deep neural networks to count dopamine neurons in substantia nigra. European Journal of Neuroscience. 48 (6), 2354-2361 (2018).
  7. Yousef, A., et al. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathologica Communications. 5 (1), 68 (2017).
  8. Koprich, J. B., et al. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease. Molecular Neurodegeneration. 5, 43 (2010).
  9. Koprich, J. B., et al. Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson's disease produced by decreasing doses of alpha-synuclein. PLoS One. 6 (3), 17698 (2011).
  10. McKinnon, C., et al. Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by alpha-synuclein. Acta Neuropathologica Communications. 8 (1), 17 (2020).
  11. Henderson, M. X., et al. Spread of alpha-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nature Neuroscience. 22 (8), 1248-1257 (2019).
  12. Ip, C. W., et al. AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease. Acta Neuropathologica Communications. 5 (1), 11 (2017).
  13. Webster, J. D., Dunstan, R. W. Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology. Veterinary Pathology. 51 (1), 211-223 (2014).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Semi quantitative DeterminationDopaminergic NeuronsSubstantia NigraRodent ModelsAutomated Image AnalysisNeuron Density EstimationParkinson s Disease ResearchIHC ImagesConfocal MicroscopeTH StainingTile Scan ImagingImage AcquisitionAlexa 488Alexa 555Region Of InterestReal time Tuning Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved