Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a method for investigating neurite morphogenesis in postnatal mouse retinal explants by time-lapse confocal microscopy. We describe an approach for sparse labeling and acquisition of retinal cell types and their fine processes using recombinant adeno-associated virus vectors that express membrane-targeted fluorescent proteins in a Cre-dependent manner.

Abstract

Discovering mechanisms that pattern dendritic arbors requires methods to visualize, image, and analyze dendrites during development. The mouse retina is a powerful model system for the investigation of cell type-specific mechanisms of neuronal morphogenesis and connectivity. The organization and composition of retinal subtypes are well-defined, and genetic tools are available to access specific types during development. Many retinal cell types also constrain their dendrites and/or axons to narrow layers, which facilitates time-lapse imaging. Mouse retina explant cultures are well suited for live-cell imaging using confocal or multiphoton microscopy, but methods optimized for imaging dendrite dynamics with temporal and structural resolution are lacking. Presented here is a method to sparsely label and image the development of specific retinal populations marked by the Cre-Lox system. Commercially available adeno-associated viruses (AAVs) used here expressed membrane-targeted fluorescent proteins in a Cre-dependent manner. Intraocular delivery of AAVs in neonatal mice produces fluorescent labeling of targeted cell types by 4-5 days post-injection (dpi). The membrane fluorescent signals are detectable by confocal imaging and resolve fine branch structures and dynamics. High-quality videos spanning 2-4 h are acquired from imaging retinal flat-mounts perfused with oxygenated artificial cerebrospinal fluid (aCSF). Also provided is an image postprocessing pipeline for deconvolution and three-dimensional (3D) drift correction. This protocol can be used to capture several cellular behaviors in the intact retina and to identify novel factors controlling neurite morphogenesis. Many developmental strategies learned in the retina will be relevant for understanding the formation of neural circuits elsewhere in the central nervous system.

Introduction

Dendrites of retinal neurons form intricate, yet specific, patterns that influence their function within neural circuits. In the vertebrate retina, diverse types of retinal ganglion cells (RGCs) and amacrine cell interneurons bear unique dendritic morphologies that differ in arbor size, location, branch length, and density1. During postnatal development, RGCs and amacrine cells extend exuberant dendritic processes into a neuropil called the inner plexiform layer (IPL), where they receive bipolar cell inputs transmitting photoreceptor signals2. As captured by time-lapse imaging of fluorescently labelled retinal population....

Protocol

NOTE: This protocol spans 2 days with a minimum period of 4-5 days for viral transduction between experimental days (Figure 1A). Animal experiments are performed in accordance with the Canadian Council on Animal Care Guidelines for Use of Animals in Research and Laboratory Animal Care under protocols approved by the Laboratory of Animal Services Animal Use and Care Committee at the Hospital for Sick Children (Toronto, Canada).

1. Preparations for the neonatal AAV in.......

Representative Results

Using the above protocol, a high-resolution 3D video of developing starburst cell dendrites was acquired, deconvolved, and corrected for 3D drift. Z-plane maximum projections were produced to make 2D videos for analysis (Supplementary Video 1, Figure 5A). 3D deconvolution of each time point increased the resolution of fine filopodia projections (Figure 5B,C). Fine filopodia protrusions are a feature of developing retinal dendrit.......

Discussion

This video demonstrates an experimental pipeline that utilizes existing genetic tools to image dendrite dynamics of developing retinal neurons with confocal live-imaging. Also demonstrated are intraocular injections of Cre-dependent AAVs encoding membrane-targeted fluorescent proteins into neonatal mice. Single cells of genetically targeted populations are brightly labelled as early as 4-5 dpi. Retinal flat-mounts were prepared for standard imaging chambers to perform live-cell confocal imaging. This method produces high.......

Acknowledgements

We thank Madison Gray for giving me a hand when I didn't have any. This research was supported by an NSERC Discovery Grant (RGPIN-2016-06128), a Sloan Fellowship in Neuroscience and a Canada Research Chair Tier 2 (to J.L.L). S. Ing-Esteves was supported by the Vision Science Research Program and NSERC Postgraduate Scholarships-Doctoral.

....

Materials

NameCompanyCatalog NumberComments
Addgene viral prep #45185-AAV9
Addgene viral prep #45186-AAV9
Dissection tools
Cellulose filter paperWhatman1001-070
Dumont #5 fine forcepsFST11252-20Two Dumont #5 forceps are required for retinal micro-dissection
Dumont forcepsVWR82027-426
Fine ScissorsFST14058-09
Mixed cellulose ester membrane (MCE) filter papers, hydrophilic, 0.45 µm pore sizeMilliporeHABG01 300
Petri Dish, 50 × 15 mmVWR470313-352
Polyethylene disposable transfer pipetteVWR470225-034
Round tip paint brush, size 3/0Conventional art supply storeTwo size 3/0 paint brushes (or smaller) are required for retinal flat-mounting
Surgical ScissorsFST14007-14
Vannas Spring Scissors - 2.5 mm Cutting EdgeFST15000-08
Live-imaging incubation system
Chamber polyethylene tubing, PE-160 10'Warner Instruments64-0755
Dual channel heater controller, Model TC-344CWarner Instruments64-2401
HC FLUOTAR L 25x/0.95 W VISIR dipping objectiveLeica15506374
Heater controller cableWarner InstrumentsCC-28
Large bath incubation chamber with slice supportWarner InstrumentsRC-27L
MPII Mini-Peristaltic PumpHarvard Apparatus70-2027
PM-6D Magnetic Heated Platform (incubation chamber heater)Warner InstrumentsPM-6D
Pump Head Tubing Pieces For MPII Mini-Peristaltic PumpHarvard Apparatus55-4148
Sample anchor (Harps)Warner Instruments64-0260Sample anchor must be compatible with incubation chamber
Sloflo In-line Solution HeaterWarner InstrumentsSF-28
Neonatal Injections
10 µL Microliter Syringe Series 700, Removable NeedleHamilton Company80314
30 G Hypodermic Needles (0.5 inch)BD PrecisionGlide305106
4 inch thinwall glass capillary, no filament (1.0 mm outer diameter/0.75 mm) WPI World Precision InstrumentsTW100-4
Ethanol 99.8% (to dilute to 70% with double-distilled water [ddH2O])Sigma-AldrichV001229 
AAV9.hEF1a.lox.TagBFP. lox.eYFP.lox.WPRE.hGH-InvBYFPenn Vector CoreAV-9-PV2453Addgene Plasmid #45185 
AAV9.hEF1a.lox.mCherry.lox.mTFP
1.lox.WPRE.hGH-InvCheTF
Penn Vector CoreAV-9-PV2454Addgene Plasmid #45186
ChAT-IRES-Cre knock-in transgenic mouse lineThe Jackson Laboratory6410
Fast Green FCF Dye content ≥85 %Sigma-AldrichF7252-25G
Flaming/Brown Micropipette Puller, model P-97Sutter Instrument Co.P-97
Green tattoo pasteKetchum MFG Co329A
Phosphate-Buffered Saline, pH 7.4, liquid, sterile-filtered, suitable for cell cultureSigma-Aldrich806552
Pneumatic PicoPumpWPI World Precision InstrumentsPV-820
Oxygenated artifiial cerebrospinal fluid (aCSF) Reagents
Calcium chloride dihydrate (CaCl2·2H2O)Sigma-AldrichC7902
Carbogen (5% CO2, 95% O2)AirGasX02OX95C2003102Supplier may vary depending on region
D-(+)-GlucoseSigma-AldrichG7021
HEPES, Free AcidBio BasicHB0264
Hydrochloric acid solution, 1 NSigma-AldrichH9892
Magnesium chloride hexahydrate (MgCl2·6H2O)Sigma-AldrichM2670
pH-Test strips (6.0-7.7)VWRBDH35317.604
Potassium chloride (KCl)Sigma-AldrichP9541
Sodium chloride (NaCl)Bio BasicDB0483
Sodium phosphate monobasic (NaH2PO4)Sigma-AldrichRDD007
Software
ImageJNational Institutes of Health (NIH)Open source

References

  1. Lefebvre, J. L., Sanes, J. R., Kay, J. N. Development of dendritic form and function. Annual Review of Cell and Developmental Biology. 31, 741-777 (2015).
  2. Graham, H. K., Duan, X. Molecular mechanisms regulating synaptic specifi....

Explore More Articles

Time lapse ImagingNeuronal ArborizationSparse Adeno associated VirusGenetically Targeted Retinal Cell PopulationsSingle cell LabelingDendritic ArborAxonal ArborNeuronal MorphogenesisConfocal Live ImagingNeonatal Arbor MorphologiesCentral Nervous SystemCre Mouse LineRecombinase dependent AAVFluorescent ProteinsPlasma MembraneAAV DilutionFast Green FCF DyeNeonatal MiceCorneaIntravitreal SpaceRetinal ACSFCarbogen

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved