A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes in detail all the steps involved in obtaining leukofilter-derived CD34+ hematopoietic progenitors and their in vitro differentiation and maturation into proplatelet-bearing megakaryocytes that are able to release platelets in the culture medium. This procedure is useful for in-depth analysis of cellular and molecular mechanisms controlling megakaryopoiesis.
The in vitro expansion and differentiation of human hematopoietic progenitors into megakaryocytes capable of elongating proplatelets and releasing platelets allows an in-depth study of the mechanisms underlying platelet biogenesis. Available culture protocols are mostly based on hematopoietic progenitors derived from bone marrow or cord blood raising a number of ethical, technical, and economic concerns. If there are already available protocols for obtaining CD34 cells from peripheral blood, this manuscript proposes a straightforward and optimized protocol for obtaining CD34+ cells from leukodepletion filters readily available in blood centers. These cells are isolated from leukodepletion filters used in the preparation of blood transfusion products, corresponding to eight blood donations. These filters are meant to be discarded. A detailed procedure to collect hematopoietic progenitors identified as CD34+ cells from these filters is described. The method to obtain mature megakaryocytes extending proplatelets while discussing their phenotypic evolution is also detailed. Finally, the protocol present a calibrated pipetting method, to efficiently release platelets that are morphologically and functionally similar to native ones. This protocol can serve as a basis for evaluating pharmacological compounds acting at various steps of the process to dissect the underlying mechanisms and approach the in vivo platelet yields.
Blood platelets come from specialized large polyploid cells, the megakaryocytes (MK), that originate from a constant and fine-tuned production process known as megakaryopoiesis (MKP). At the apex of this process are hematopoietic stem cells which, in contact with the bone marrow environment (cytokines, transcription factors, hematopoietic niche), will be able to proliferate and differentiate into hematopoietic progenitors (HP) able to commit toward the megakaryocytic pathway, giving rise to immature MKs1. Under the influence of various cytokines, and in particular thrombopoietin (TPO), which is the major cytokine of MKP; the MK will then undergo two major stages of maturation: endomitosis and the development of demarcation membranes (DMS). This fully mature MK then appears close to a sinusoid vessel in which it can emit cytoplasmic extensions, the proplatelets, which will be released under the blood flow and subsequently remodeled into functional platelets2. The cloning of TPO in 19943 provided a boost in the study of MKP by accelerating the development of in vitro culture techniques allowing HP differentiation and MK maturation.
There are many pathologies affecting blood platelets, both in terms of platelet number (increase or decrease) and function4,5. Being able to recapitulate MKP in vitro from human HP could improve understanding of the molecular and cellular mechanisms underlying this process and ultimately the therapeutic management of patients.
Various sources of human HP are suitable: cord blood, bone marrow, and peripheral blood6,7,8. Harvesting HP from peripheral blood raises less logistical and ethical problems than their recovery from cord blood or the bone marrow. HP can be recovered from leukapheresis or buffy coat, but these sources are expensive and not always available in blood centers. Other protocols, less expensive and easier to perform, allow direct recovery of human peripheral blood mononuclear cells (PBMCs) without the need for prior CD34 driven isolation4,8. However, the purity of megakaryocytes is not satisfactory with this method and a selection of CD34+ cells from PBMC is recommended for optimal differentiation into MK. This led us to implement a HP purification from leukoreduction filters (LRF), routinely used in blood banks to remove white blood cells and thus avoid adverse immunological reactions9. Indeed, since 1998, platelet concentrates have been automatically leukodepleted in France. At the end of this process, LRF are discarded and all the cells retained in the LRF are destroyed. Cells in LRFs are, therefore, readily available at no additional cost. LRFs have a cellular content close to that obtained by leukapheresis or in buffy coats, notably in their composition of CD34+ HP making them a remarkably attractive source10. LRF as a human HP source has already been demonstrated to provide cells with intact functional capacities11. This source has the advantage of being abundant and affordable for laboratory research. In this context, this article describes successively: i) the extraction and selection of CD34+ HP from LRFs; ii) a two-phase optimized culture, which recapitulates the commitment of HP into the megakaryocytic pathway and the maturation of MK capable of emitting proplatelets; iii) a method for efficiently releasing platelets from these MK; and iv) a procedure for phenotyping MK and cultured platelets.
Control human samples were obtained from volonteer blood donors who gave written informed consent recruited by the blood transfusion center where the research was performed (Etablissement Français du Sang-Grand Est). All procedures were registered and approved by the French Ministry of Higher Education and Research and registered under the number AC_2015_2371.The donors gave their approval in the CODHECO number AC- 2008 - 562 consent form, in order for the samples to be used for research purposes. Human studies were performed according to Helsinki declaration.
1. Extraction and selection of CD34+ cells (HP) from LRF
Figure 1: LRF back flushing modalities. (A) Representative scheme of (i) the sterile connection of the transfer bag to the LRF and (ii) the tubing set to the LRF. (B) Representative scheme of the connection of the syringes for cell collection. Please click here to view a larger version of this figure.
2. Culture and differentiation of CD34+ cells to produce mature proplatelet-bearing megakaryocytes
NOTE: Cell culture protocol (Figure 3A), representative scheme of the cell culture procedure are detailed in this section.
3. Flow cytometry analysis (MK phenotyping and cultured platelets count)
NOTE: This protocol can be applied to the phenotyping of the cells on the selected culture days. It also allows the determination of the number of the cultured platelet release (Figure 4A,B).
Extraction and selection of CD34+ cells from LRFs
Here, the method, derived from Peytour et al.9, describes the extraction and selection of CD34+ cells from discarded LRFs available in blood banks after leukocyte removal. Following the backflush procedure, usually 1.03 x 109 ± 2.45 x 108 cells/LRF (Mean±SEM; n = 155) are recovered with a viability of 94.88 ± 0.10% (Figure 2A i...
This protocol describes a method for producing MK capable of emitting proplatelets from blood-derived HP and to release platelets from the culture medium. HP are obtained from LRF, a by-product of the blood banks, used to remove contaminating leukocytes from cellular blood products and avoid adverse reactions. Although this method is relatively simple, a few points deserve special attention.
Deposition of the cell suspension on the density gradient medium (step 1.3.1) has to be performed gentl...
The authors have nothing to disclose.
This work has been supported by ANR (Agence National de la Recherche) Grant ANR- 17-CE14-0001-1.
Name | Company | Catalog Number | Comments |
7-AAD | Biolegend | 558819 | |
ACD | EFS-Alsace | NA | |
Anti-CD34-PE | Miltenyi biotec | 130-081-002 | |
Anti-CD34-PECy7 | eBioscience | 25-0349-42 | |
Anti-CD41-Alexa Fluor 488 | Biolegend | 303724 | |
Anti-CD42a-PE | BD Bioscience | 559919 | |
Apyrase | EFS-Alsace | NA | |
BD Trucount Tubes | BD Bioscience | 340334 | |
CD34 MicroBead Kit UltraPure, human | Miltenyi biotec | 130-100-453 | |
Centrifuge | Heraeus | Megafuge 1.OR | Or equivalent material |
Compteur ADAM | DiagitalBio | NA | Or equivalent material |
Cryotubes | Dutscher | 55002 | Or equivalent material |
Dextran from leuconostoc spp | Sigma | 31392-50g | Or equivalent material |
DMSO Hybri-max | Sigma | D2650 | |
EDTA 0.5 M | Gibco | 15575-039 | |
Eppendorf 1,5 mL | Dutscher | 616201 | Or equivalent material |
Filtration unit Steriflip PVDF | Merck Millipore Ltd | SE1M179M6 | |
Flow Cytometer | BD Bioscience | Fortessa | |
Human LDL | Stemcell technologies | #02698 | |
ILOMEDINE 0,1 mg/1 mL | Bayer | MA038EX | |
Inserts | Fenwal | R4R1401 | Or equivalent material |
Laminar flow hood | Holten | NA | Archived product |
LS Columms | Miltenyi Biotec | 130-042-401 | |
Lymphoprep | Stemcell | 7861 | |
Pen Strep Glutamine (100x) | Gibco | 10378-016 | |
PBS (-) | Life Technologies | 14190-169 | Or equivalent material |
PGi2 | Sigma | P6188 | |
Poches de transferts 600ml | Macopharma | VSE4001XA | |
Pre-Separation Filters (30µm) | Miltenyi Biotec | 130-041-407 | |
StemRegenin 1 (SR1) | Stemcell technologies | #72344 | |
StemSpan Expansion Supplement (100x) | Stemcell technologies | #02696 | |
StemSpan-SFEM | Stemcell technologies | #09650 | |
Stericup Durapore 0,22µm PVDF | Merck Millipore Ltd | SCGVU05RE | |
SVF Hyclone | Thermos scientific | SH3007103 | |
Syringues 30 mL | Terumo | SS*30ESE1 | Or equivalent material |
Syringe filters Millex 0,22µM PVDF | Merck Millipore Ltd | SLGV033RB | |
TPO | Stemcell technologies | #02822 | |
Tubes 50 mL | Sarstedt | 62.548.004 PP | Or equivalent material |
Tubes 15 mL | Sarstedt | 62.554.001 PP | Or equivalent material |
Tubulures | B Braun | 4055137 | Or equivalent material |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved