A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present an immunophenotyping strategy for the characterization of megakaryocyte differentiation, and show how that strategy allows the sorting of megakaryocytes at different stages with a fluorescence-activated cell sorter. The methodology can be applied to human primary tissues, but also to megakaryocytes generated in culture in vitro.
Megakaryocyte (MK) differentiation encompasses a number of endomitotic cycles that result in a highly polyploid (reaching even >64N) and extremely large cell (40-60 µm). As opposed to the fast-increasing knowledge in megakaryopoiesis at the cell biology and molecular level, the characterization of megakaryopoiesis by flow cytometry is limited to the identification of mature MKs using lineage-specific surface markers, while earlier MK differentiation stages remain unexplored. Here, we present an immunophenotyping strategy that allows the identification of successive MK differentiation stages, with increasing ploidy status, in human primary sources or in vitro cultures with a panel integrating MK specific and non-specific surface markers. Despite its size and fragility, MKs can be immunophenotyped using the above-mentioned panel and enriched by fluorescence-activated cell sorting under specific conditions of pressure and nozzle diameter. This approach facilitates multi-Omics studies, with the aim to better understand the complexity of megakaryopoiesis and platelet production in humans. A better characterization of megakaryopoiesis may pose fundamental in the diagnosis or prognosis of lineage-related pathologies and malignancy.
Megakaryocytes (MKs) develop from hematopoietic stem cells (HSCs) following a complex process called megakaryopoiesis, which is orchestrated mainly by the hormone thrombopoietin (TPO). The classical view of megakaryopoiesis describes the cellular journey from HSCs through a succession of hierarchical stages of committed progenitors and precursor cells, leading ultimately to a mature MK. During maturation, MKs experience multiple rounds of endomitosis, develop an intricate intracellular demarcation membrane system (DMS), which provides enough membrane surface for platelet production, and efficiently produce and pack the plethora of factors that are contained in the dif....
Whole blood and bone marrow samples were obtained and processed in accordance with the 1964 Declaration of Helsinki. Whole blood samples were obtained from healthy donors after giving informed consent (ISPA), within a study approved by our institutional medical ethical committee (Hospital Universitario Central de Asturias -HUCA-). Bone marrow samples were obtained from bone marrow aspirate discard material of patients managed at the Dept. of Hematology of the Hospital Clínico San Carlos (HCSC).
Bone Marrow and Ploidy
In Figure 4, we show a representative immunophenotyping analysis of megakaryopoiesis in BM samples (aspiration) from patients. When plotting the cellular fraction against CD71 and CD31, we have gated six main populations: CD31- CD71- (red), CD31- CD71+ (blue), CD31+ CD71- (orange), CD31+ CD71mid (light green), CD31+ CD71+.......
Most of the research focusing on the study of megakaryopoiesis by flow cytometry is to date limited to the identification of MK subsets using only lineage-specific surface markers (i.e., CD42A/CD42B, CD41/CD61), while earlier MK differentiation stages have been poorly examined. In the present article we show an immunophenotyping strategy to address a comprehensive flow cytometry characterization of human megakaryopoiesis. Overall, we would like to highlight the utility of combining MK specific and non-specific s.......
We thank Marcos Pérez Basterrechea, Lorena Rodríguez Lorenzo and Begoña García Méndez (HUCA) and Paloma Cerezo, Almudena Payero and María de la Poveda-Colomo (HCSC) for technical support. This work was partially supported by Medical Grants (Roche SP200221001) to A.B., an RYC fellowship (RYC-2013-12587; Ministerio de Economía y Competitividad, Spain) and an I+D 2017 grant (SAF2017-85489-P; Ministerio de Ciencia, Innovación y Universidades, Spain and Fondos FEDER) to L.G., a Severo Ochoa Grant (PA-20-PF-BP19-014; Consejería de Ciencia, Innovación y Universidades del Principado de Asturias, Spain) to P.M.-B. and an intram....
Name | Company | Catalog Number | Comments |
130 micron Nozzle | BD | 643943 | required for MK sorting |
5810R Centrifuge | Eppendorf | Cell isolation and washes | |
A-4-62 Swing Bucket Rotor | Eppendorf | Cell isolation and washes | |
Aerospray Pro Hematology Slide Stainer / Cytocentrifuge | ELITech Group | Automatized cytology devise, where slides are stained with Mat-Grünwald Giemsa | |
CO2 Incubator Galaxy 170 S | Eppendorf | Cell Incubation | |
Cytospin 4 Cytocentrifuge | Thermo Scientific | To prepare cytospins | |
FACSAria IIu sorter | BD | Lasers 488-nm and 633-nm | |
FACSCanto II flow cytometer | BD | Lasers 488-nm , 633-nm and 405-nm | |
Olympus Microscope BX 41 | Olympus | Microphotographs | |
Olympus Microscope BX 61 | Olympus | Microphotographs | |
Zoe Fluorescent Cell Imager | BioRad | Microphotographs | |
To obtain PBMCs | |||
Lipids Cholesterol Rich from adult bovine serum | Sigma-Aldrich | L4646 | or similar |
Lymphoprep | Stem Cell Technologies | #07801 | or similar |
Penicillin-Streptomycin | Sigma-Aldrich | P4333 | or similar |
Recombinant human Erythropoietin (EPO) | R&D Systems | 287-TC-500 | or similar |
Recombinant human stem cell factor (SCF) | Thermo Fisher Scientific, Gibco™ | PHC2115 | or similar |
Recombinant human thrombopoietin (TPO) | Thermo Fisher Scientific, Gibco™ | PHC9514 | or TPO receptor agonists |
StemSpan SFEM | Stem Cell Technologies | #09650 | |
Flow Cytometry Analyses | |||
Bovine Serum Albumin | Merck | A7906-100G | or similar |
BD CompBead Anti-Mouse Ig, κ/Negative Control Compensation Particles Set | BD | 552843 | Antibodies for human cells are generally from mouse. |
BD Cytofix/Cytoperm | BD | 554714 | or similar |
BD FACS Accudrop Beads | BD | 345249 | |
CD31 AF-647 | BD | 561654 | Mouse anti-human |
CD31 FITC | Immunostep | 31F-100T | |
CD34 FITC | BD | 555821 | Mouse anti-human |
CD41 PE | BD | 555467 | Mouse anti-human |
CD41 PerCP-Cy5.5 | BD | 333148 | Mouse anti-human |
CD42A APC | Immunostep | 42AA-100T | We observed unspecific binding... that needs to be assessed |
CD42A PE | BD | 558819 | Mouse anti-human |
CD42B PerCP | Biolegend | 303910 | Mouse anti-human |
CD49B PE | BD | 555669 | Mouse anti-human |
CD61 FITC | BD | 555753 | Mouse anti-human |
CD71 APC-Cy7 | Biolegend | 334109 | Mouse anti-human |
Hoechst 33342 | Thermo Fisher Scientific | H3570 | |
Human BD Fc Block | BD | 564219 | Fc blocking - control |
KIT PE-Cy7 | Biolegend | 313212 | Mouse anti-human |
Lineage Cocktail 2 FITC | BD | 643397 | Mouse anti-human |
RNAse | Merck | R6513 | or similar |
Triton X-500 | Merck | 93443-500ML | or similar |
Cell strainers for sorting | |||
CellTrics Filters 100 micrometers | Sysmex | 04-004-2328 | Cell strainers |
Note: we do not specify general reagents/chemicals (PBS, EDTA, etc) or disposables (tubes, etc), or reagents specified in previous published and standard protocols - unless otherwise specified. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved