Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Detection of host-bacterial pathogen interactions based on phenotypic adherence using high-throughput fluorescence labeling imaging along with automated statistical analysis methods enables rapid evaluation of potential bacterial interactions with host cells.

Abstract

Identification of emerging bacterial pathogens is critical for human health and security. Bacterial adherence to host cells is an essential step in bacterial infections and constitutes a hallmark of potential threat. Therefore, examining the adherence of bacteria to host cells can be used as a component of bacterial threat assessment. A standard method for enumerating bacterial adherence to host cells is to co-incubate bacteria with host cells, harvest the adherent bacteria, plate the harvested cells on solid media, and then count the resultant colony forming units (CFU). Alternatively, bacterial adherence to host cells can be evaluated using immunofluorescence microscopy-based approaches. However, conventional strategies for implementing these approaches are time-consuming and inefficient. Here, a recently developed automated fluorescence microscopy-based imaging method is described. When combined with high-throughput image processing and statistical analysis, the method enables rapid quantification of bacteria that adhere to host cells. Two bacterial species, Gram-negative Pseudomonas aeruginosa and Gram-positive Listeria monocytogenes and corresponding negative controls, were tested to demonstrate the protocol. The results show that this approach rapidly and accurately enumerates adherent bacteria and significantly reduces experimental workloads and timelines.

Introduction

Bacterial adhesion is a process whereby bacteria attach to other cells or surfaces. Successful establishment of infection by bacterial pathogens requires adhesion to host cells, colonization of tissues, and in some cases, invasion of host cells1,2,3. Emerging infectious diseases constitute major public health threats, as evidenced by the recent COVID-19 pandemic4,5,6. Importantly, new or emerging pathogens may not be readily discerned using genomic-based approaches, especially in cas....

Protocol

1. A549 cell culture

  1. Maintain the A549 cell line in F-12K medium supplemented with 10% fetal bovine serum (FBS) and incubate at 37 °C, 5% CO2.
  2. Change the medium every 3-4 days and passage at 85%-95% confluency.
  3. Briefly, rinse the cells with 1 x phosphate-buffered saline (PBS, pH 7.4, unless otherwise indicated) and treat with 1 ml of 0.25% Trypsin-0.53 mM ethylenediaminetetraacetic acid (EDTA) solution (submerging the cell layer) for about 2 min at 37 °C.
  4. Add.......

Representative Results

To develop the fluorescence imaging-based bacterial adherence assay, P. aeruginosa strain PAO1 and its negative-adherence counterpart E. coli were used to test the protocol effectiveness, as the adherence of these bacteria to A549 cells had been reported14,20,22. First, GFP- labeled P. aeruginosa (PAO1) and GFP-labeled E. coli were co-incubated with a human immortalized epithelial cell line A5.......

Discussion

The protocol describes an automated approach for enumerating bacterial attachment to host cells. The described approach has several attractive advantages over conventional methods. First, this approach enables the precise quantification of the number of microbial pathogen cells that are attached to individual host cells. Importantly, this quantification can be performed without the need for laborious bacterial harvesting, serial dilutions, plating on solid media, and determination of CFUs10,<.......

Acknowledgements

We are thankful to Dr. Kaite Zlotkowski of Biotek Inc. for their technical support. We also thank Dr. Lori Burrows, McMaster University, for the generous gift of the Pseudomonas strains.This work was supported by the Department of Defense under contract number W911NF1920013 to PdF; the Defense Advanced Research Projects Agency (DARPA) and the Department of Interior under Contract No. 140D6319C0029 to PdF. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

....

Materials

NameCompanyCatalog NumberComments
10x PBSVWR45001-130
4′,6-diamidino-2-phenylindole (DAPI)Thermo Fisher62248Host cell staining dye
96 well plateCorning3882Half area well, flat clear bottom
A549 cellsATCC CCL 185Mammalian cell line
BactoView Live RedBiotium40101Bacteria staning dye
CentrifugeEppendorf5810R
CFSE cell division trackerBioLegend423801
Cytation 5 BioTekCytation 5 Cell imaging multi-mode reader
E. coliLaboratory stock 
EGM bulletKitLonzaCC-3124HUVEC cell culture medium
EHECNIST collections
F-12k mediumATCC 302004A549 cell culture medium
Fetal bovine serumCorning35-016-CV
HUVECLaboratory stock 
L. monocytogenesNIST collections
OD600 DiluPhotometerIMPLEN
P. aeruginosaDr. Lori Burrows laboratory stock
P. aeruginosa ΔpilADr. Lori Burrows laboratory stock
S. agalactiaeNIST collections
S. aureusBEINR-46543
S. aureus ΔsaeRBEINR-48164
S. rubidaeaNIST collections
Typical soy brothGrowcellsMBPE-4040

References

  1. Pizarro-Cerda, J., Cossart, P. Bacterial adhesion and entry into host cells. Cell. 124, 715-727 (2006).
  2. Kipnis, E., Sawa, T., Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Mé....

Explore More Articles

Bacterial AdherenceHigh throughput DetectionHost CellsAutomatedTime savingReproducibleMultiplicity Of InfectionBacterial SuspensionStainingBacterial Adherence AssayA549 CellsPBSFormaldehyde

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved