A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article describes a workflow of techniques employed for testing novel candidate mediators of melanoma metastasis and their mechanism(s) of action.
Metastasis is a complex process, requiring cells to overcome barriers that are only incompletely modeled by in vitro assays. A systematic workflow was established using robust, reproducible in vivo models and standardized methods to identify novel players in melanoma metastasis. This approach allows for data inference at specific experimental stages to precisely characterize a gene's role in metastasis. Models are established by introducing genetically modified melanoma cells via intracardiac, intradermal, or subcutaneous injections into mice, followed by monitoring with serial in vivo imaging. Once preestablished endpoints are reached, primary tumors and/or metastases-bearing organs are harvested and processed for various analyses. Tumor cells can be sorted and subjected to any of several 'omics' platforms, including single-cell RNA sequencing. Organs undergo imaging and immunohistopathological analyses to quantify the overall burden of metastases and map their specific anatomic location. This optimized pipeline, including standardized protocols for engraftment, monitoring, tissue harvesting, processing, and analysis, can be adopted for patient-derived, short-term cultures and established human and murine cell lines of various solid cancer types.
The high mortality associated with metastatic melanoma combined with an increasing incidence of melanoma worldwide1 (an estimated 7.86% increase by 2025) calls for new treatment approaches. Advances in target discovery hinge upon reproducible models of metastasis, a highly complex process. Throughout the steps of the metastatic cascade, melanoma cells must overcome countless barriers to achieve immune system evasion and colonization of distant tissues2. The resilience and adaptability of melanoma cells arise from a multitude of factors, including their high genetic mutational burden3 and their neu....
NOTE: The animal procedures involved in the following protocol were approved by the New York University Institutional Animal Care and Use Committee (IACUC). All the procedures are conducted in facilities approved by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC). Figure 1 depicts the general experimental approach.
1. Patient-derived melanoma short-term cultures (STCs)
The following figures illustrate how the described workflow has been applied for the identification of novel drivers of melanoma metastasis. Figure 2 summarizes the results of a published study in which the effects of silencing the fucosyltransferase FUT8 in in vivo melanoma metastasis were studied26. Briefly, analysis of human patient glycomic data (obtained by lectin arrays) and transcriptomic profiling revealed increased levels of alpha-1,6-fucose associat.......
The aim of this technical report is to offer a standardized, top-to-bottom workflow for the investigation of potential actors in melanoma metastasis. As in vivo experiments can be costly and time-consuming, strategies to maximize efficiency and increase the value of the information obtained are paramount.
It is imperative to use complementary approaches throughout to crossvalidate findings within the same experiment. For example, both NuMA immunohistochemical staining and BLI are comp.......
We thank the Division of Advanced Research Technologies (DART) at NYU Langone Health, and in particular, the Experimental Pathology Research Laboratory, Genome Technology Center, Cytometry and Cell Sorting Laboratory, Pre-Clinical Imaging Core, which are partially supported by the Perlmutter Cancer Center Support Grant NIH/NCI 5P30CA016087. We thank the NYU Interdisciplinary Melanoma Cooperative Group (PI: Dr. Iman Osman) for providing access to patient-derived melanoma short-term cultures+ (10-230BM and 12-273BM), which were obtained through IRB-approved protocols (Universal Consent study #s16-00122 and Interdisciplinary Melanoma Cooperative Group study #1....
Name | Company | Catalog Number | Comments |
#15 Scapel Blade | WPI | 500242 | For surgical procedures |
#3 Scapel Handle | WPI | 500236 | For surgical procedures |
1 mL Tuberculin syringe, slip tip | BD | 309626 | Injections |
10 mL syringe, slip tip | BD | 301029 | Perfusion |
10% Formalin Sodium Buffered | EK Industries | 4499-20L | For perfusion/tissue fixative |
15 mL Conical | Corning | 430052 | Cell culture |
15 mL Conical Polypropylene Centrifuge Tubes | Falcon | 352196 | Cell culture |
200 Proof Ethanol | Deacon Labs | 04-355-223 | Histology |
22G – 22mm needle | BD | 305156 | Perfusion |
4-0 Vicryl Suture | Ethicon | J464G | Suture |
4% Carson's phosphate buffered paraformaldehyde | EMS | 15733-10 | For perfusion/tissue fixative |
40µm | Corning | 431750 | Tissue processing |
5-0 Absorbable Suture | Ethicon | 6542000 | Closure |
50 mL Conical | Corning | 430828 | Cell culture |
50mL Conical Polypropylene Centrifuge Tubes | Falcon | 352070 | Cell culture |
7-0 Silk suture | FST | 18020-70 | Ligature |
70µm | Corning | 431751 | Tissue processing |
Anti-fade mounting media  | Vector Labs | H-1000-10 | Immunofluorescence |
Approximator applying Forceps, 10cm | WPI | 14189 | For microsurgical procedures |
Avance | Bruker | 3 HD | NMR Console |
Biospec 7030Â | Bruker | 7030 | Micro MRI |
BSA | Bioreg | A941 | NuMA Staining |
Castroviejo suturing forceps, straight tips 5.5mm tying platform, 11cm | WPI | WP5025501 | For microsurgical procedures |
Coplin Staining Jar | Bel-Art | F44208-1000 | Histology |
DAPI | Sigma-Aldrich | D9542-1MG | Immunofluorescence |
dCas9-KRAB | Addgene | 110820 | Genetic manipulation |
DNase I | NEB | M0303L | Tissue processing |
DPBS | Corning | 21-030-CM | Tissue processing |
Extra Sharp Uncoated Single Edge Blade | GEM | 62-0167 | Tissue processing |
Extracellular Matrix Substrate | Corning | 354234 | Consider the Growth Factor Reduced ( as alternative |
FBS | Cytiva | SH30910.03 | Cell culture |
Fiji Image J | Fiji Image J | Software | Immunofluorescence |
Goat anti-rabbit HRP conjugated multimer | Thermo Fisher | A16104 | NuMA Staining |
Goat Serum | Gibco | PCN5000 | Immunofluorescence |
HBSS | Corning | 21-020-CV | Tissue processing |
Hematoxylin | Richard-Allan Scientific | 7231 | Histology |
Illumina IIIÂ | PerkinElmer | CLS136334 | BLI Instrument |
Insulin syringe 28G - 8mm needle | BD | 329424 | Injections |
Insulin syringe 31G - 6mm needle | BD | 326730 | Injections |
Iris Forceps, 10.2cm, Full Curve, serrated | WPI | 504478 | For perfusion and surgical procedures |
Isoflurane USP | Covetrus | 11695067772 | Anesthesia |
Jewelers #7 Forceps Titanium 11 cm 0.07 x 0.01 mm Tip | WPI | WP6570 | For microsurgical procedures |
Ketamine HCl 100mg/mL | Mylan Ind. | 1049007 | Anesthesia |
lentiCRISPRv2 | Addgene | 98290 | Genetic manipulation |
Lycopersicon Esculentum (Tomato) Lectin, DyLight 649 | Invitrogen | L32472 | Vascular endothelial cells marker |
MEM non-essential amino acids X 100 | Corning | 25-025-CI | Cell culture |
Metzenbaum Scissors | WPI | 503269 | For surgical procedures |
Microinjection Unit | KOPF | 5000 | Intracardiac injections |
NaCl | Fisher | S25877Â | NuMA Staining |
Needle 30G x 25mm | BD | 305128 | Intracardiac Injection |
Needle 33G x 15mm | Hamilton | 7747-01 | Intracarotid Injection |
Needle holder, Castroviejo, 14cm, with lock, 1.2mm Serrated Jaws | WPI | 14137-G | For microsurgical procedures |
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice | The Jackson Laboratory | 005557 | Murine model |
NU/J mice | The Jackson Laboratory | 002019 | Murine model |
Nuclear Mitotic Apparatus Protein polyclonal rabbit anti-human | Abcam | 97585 | NuMA Staining |
Penicillin-Streptomycin 10000U/mL | Gibco | 15140122 | Cell culture |
Percoll | GE | 0891-01 | density separation solution |
PI Classic Surgical Gloves | Cardinal Health | 2D72PT75X | Surgery |
pLKO Tet-On | Addgene | 21915 | Genetic manipulation |
Povidone-Iodine 10% Solution | Medline | MDS093943 | Surgery |
Proparacaine Drops 0.5% | Akorn Pharma | AX0501 | Opthalmic local anesthetic |
Puralube Petrolatum Opthalmic Ointment | Dechra | 83592 | Anesthesia |
Razor Blade Double Edge Blades | EMS | 72000 | Shaving and Vibrotome Brain Slicing |
Reflex 9mm EZ Clip | Braintree | EZC- KIT | Wound closure |
RPMI 1640Â | Corning | 10-040-CM | Cell culture |
Scissors, Spring 10.5cm Str, 8mm Blades | WPI | 501235 | For microsurgical procedures |
Semi-Automatic Vibrating Blade Microtome | Leica | VT1200 | Brain Slice Immunofluorescence |
Single Channel Anesthesia Vaporizer System | Kent Scientific | VetFlo-1210SÂ | Anesthesia |
Smartbox Tabletop Chamber System and Exhaust Blower | EZ Systems | TT4000 | CO2 Euthanasia |
Sterile Fenestrated Disposable Drape | Medline | NON21002 | Surgery |
Sterile Non-Reinforced Aurora Surgical Gowns with Set-In Sleeves | Medline | DYNJP2715 | Surgery |
T25 Flask | Corning | 430639 | Cell culture |
Tris | Corning | 46-031-CM | NuMA Staining |
Triton X-100 | Sigma-Aldrich | X100-500ML | Immunofluorescence |
Troutman tying forceps, 10cm, Curved G pattern, 0.52mm tip with tying platform | WPI | WP505210 | For microsurgical procedures |
Vessel clips 10G Pressure 5x 0.8mm Jaws, 5/pkg | WPI | 15911 | For microsurgical procedures |
Visiopharm | Visiopharm | Visiopharm | NuMA Staining Quantification Software |
Xylasine 100mg/mL | Akorn Pharma | 59399-111-50 | Anesthesia |
Xylene | Fisher | X3P-1GAL | Histology |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved