Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present three data analysis protocols for fluorescein angiography (FA) and optical coherence tomography (OCT) images in the study of Retinal Vein Occlusion (RVO).

Abstract

Advancements in ophthalmic imaging tools offer an unprecedented level of access to researchers working with animal models of neurovascular injury. To properly leverage this greater translatability, there is a need to devise reproducible methods of drawing quantitative data from these images. Optical coherence tomography (OCT) imaging can resolve retinal histology at micrometer resolution and reveal functional differences in vascular blood flow. Here, we delineate noninvasive vascular readouts that we use to characterize pathological damage post vascular insult in an optimized mouse model of retinal vein occlusion (RVO). These readouts include live imaging analysis of retinal morphology, disorganization of retinal inner layers (DRIL) measure of capillary ischemia, and fluorescein angiography measures of retinal edema and vascular density. These techniques correspond directly to those used to examine patients with retinal disease in the clinic. Standardizing these methods enables direct and reproducible comparison of animal models with clinical phenotypes of ophthalmic disease, increasing the translational power of vascular injury models.

Introduction

Neurovascular disease is a major healthcare problem responsible for ischemic strokes, a leading cause of mortality and morbidity, and retinal vascular diseases that lead to vision loss1,2. To model neurovascular disease, we employ a mouse model of retinal vein occlusion (RVO). This model is noninvasive and utilizes similar in vivo imaging techniques to those used to examine people with retinal vascular disease in a clinical setting. The use of this model thus increases the translational potential of studies utilizing this model. As with all mouse models, it is critical to maximize reproducibility of t....

Protocol

This protocol follows the Association for Research in Vision and Ophthalmology (ARVO) statement for the use of animals in ophthalmic and vision research. Rodent experiments were approved and monitored by the Institutional Animal Care and Use Committee (IACUC) of Columbia University.

NOTE: Imaging was done on 2 month old C57BL/6J male mice that weighed approximately 23 g.

1. Preparation of reagents for retinal imaging

  1. Preparation of injec.......

Representative Results

These analysis methods allow for the quantification of retinal pathology captured by FA and OCT imaging. The experiments from which the representative data is extracted used C57BL/6J male mice who either served as uninjured controls or underwent the RVO procedure and received either Pen1-XBir3 treatment eyedrops or Pen1-Saline vehicle eyedrops. The RVO injury model involved the laser irradiation (532 nm) of the major veins in each eye of an anesthetized mouse following a tail-vein injection of rose bengal, a photoactivat.......

Discussion

Noninvasive rodent retinal imaging presents an avenue to study pathology and develop interventions. Previous studies have developed and optimized a mouse model of RVO, limiting variability and allowing for reliable translation of common clinical pathologies in the murine retina5,7,13. Developments in ophthalmic imaging technology further allow for the use of clinical in vivo imaging techniques such as FA and OCT in expe.......

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) grant DGE - 1644869(to CKCO), the National Eye Institute (NEI) 5T32EY013933 (to AMP), the National Institute of Neurological Disorders and Stroke (RO1 NS081333, R03 NS099920 to CMT), and the Department of Defense Army/Air Force (DURIP to CMT).

....

Materials

NameCompanyCatalog NumberComments
AK-Fluor 10%AkornNDC: 17478-253-10light-sensitive
CarprofenRimadylNADA #141-199keep at 4 °C
GenTealAlcon00658 06401
Image JNIH
InSight 2DPhoenix Technology GroupOCT analysis software
Ketamine HydrochlorideHenry ScheinNDC: 11695-0702-1
PhenylephrineAkornNDCL174478-201-15
Phoenix Micron IVPhoenix Technology GroupRetinal imaging microscope
Phoenix Micron Meridian ModulePhoenix Technology GroupLaser photocoagulator software
Phoenix Micron Optical Coherence Tomography ModulePhoenix Technology GroupOCT imaging software
Phoenix Micron StreamPix ModulePhoenix Technology GroupFundus imaging and acquisition targeting
PhotoshopAdobe
RefreshAllergan94170
TropicamideAkornNDC: 174478-102-12
XylazineAkornNDCL 59399-110-20

References

  1. Tong, X., et al. The burden of cerebrovascular disease in the united states. Preventing Chronic Disease. 16, 180411 (2019).
  2. Nakahara, T., Mori, A., Kurauchi, Y., Sakamoto, K., Ishii, K. Neurovascular interactions in....

Explore More Articles

Retinal ImagingVascular InjuryMouse ModelOptical Coherence TomographyFluorescein LeakageRetinal Layer Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved