A subscription to JoVE is required to view this content. Sign in or start your free trial.
Electroporation of plasmid DNA into skeletal muscle is a viable method to modulate gene expression without compromising muscle contractility in mice.
Transient gene expression modulation in murine skeletal muscle by plasmid electroporation is a useful tool for assessing normal and pathological physiology. Overexpression or knockdown of target genes enables investigators to manipulate individual molecular events and, thus, better understand the mechanisms that impact muscle mass, muscle metabolism, and contractility. In addition, electroporation of DNA plasmids that encode fluorescent tags allows investigators to measure changes in subcellular localization of proteins in skeletal muscle in vivo. A key functional assessment of skeletal muscle includes the measurement of muscle contractility. In this protocol, we demonstrate that whole muscle contractility studies are still possible after plasmid DNA injection, electroporation, and gene expression modulation. The goal of this instructional procedure is to demonstrate the step-by-step method of DNA plasmid electroporation into mouse skeletal muscle to facilitate uptake and expression in the myofibers of the tibialis anterior and extensor digitorum longus muscles, as well as to demonstrate that skeletal muscle contractility is not compromised by injection and electroporation.
Plasmid DNA electroporation into skeletal muscle in vivo is an important tool for assessing changes in skeletal muscle physiology and molecular signaling by modulating gene expression in a variety of physiological and pathophysiological conditions1,2,3,4,5,6,7,8,9. Experimental gene transfer into skeletal muscle was demonstrated as early as 1990 by Wolff et al.....
All experiments using animals were performed at the Penn State College of Medicine, approved by Penn State University's Institutional Animal Care and Use Committee, and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. 12-week-old female C57BL/6 mice were used for this procedure. All surgical tools were autoclaved for sterility prior to experimentation.
1. TA and EDL injection/electroporation preparation
Electroporation to facilitate gene transfer in skeletal muscle is a useful technique used to evaluate changes in muscle physiology. We have demonstrated a detailed, step-by-step procedure to accomplish efficient gene transfer in both the TA and EDL muscles. Differences in transfection efficiency occur due to a number of variables. Among these variables are electroporation parameters (pulses, voltage, pulse duration, etc.), gene construct size, and concentration/volume of DNA injected. We have previously shown that electr.......
In vivo gene transfer in skeletal muscle enhanced by electroporation is a useful and relatively simple tool for modulating protein expression in muscle. We have shown the steps required to achieve efficient gene transfer in the EDL and TA muscles and demonstrated that contractility measurement of the EDL is viable following the procedure. This technique does not require more complicated viral vectors and allows for the comparison of transfected and non-transfected muscle fiber cross-sectional area in a single mu.......
None
....Name | Company | Catalog Number | Comments |
4-0 Nylon suture (non-absorbable) | Ethicon | 662G | Suture to close skin incision |
50µl Hamilton syringe | Hamilton | 80501 | microsyringe |
C57BLl/6NHsd mice | Envigo | 044 | 12 week-old female mice used for experimentation |
Caliper Electrode | BTX | 45-0102 | 1.0cm x 1.0cm stainless steel |
Dynamic Muscle Control Data Acquisition/analysis | Aurora Scientific | 605A | Software used for muscle contractility measurement and analysis |
ECM 830 Electroporation System | BTX | 45-0662 | electroporator |
EndoFree Plasmid Maxi Kit | Qiagen | 12362 | Plasmid purification kit |
Extra Narrow Scissors | Fine Science Tools | 14088-10 | Scissors for blunt dissection |
Force Transducer | Aurora Scientific | 407A | To measure force from EDL |
Micro-Masquito Hemastats | Fine Science Tools | 13010-12 | Hemastats for surturing |
pcDNA3.1 mammalian expression vector | Fisher Scientific | V79020 | Control Vector |
pcDNA3-EGFP expression plasmid | Addgene | 13031 | Plasmid for GFP expression |
Semken curved forceps | Fine Science Tools | 11009-13 | Forceps for surgery |
Surgical blades stainless steel no. 10 | Becton Dickinson | 37 1210 | Scalpel blades |
Tissue-Tek O.C.T. media | VWR | 25608-930 | Freezing media for histology |
Wheat Germ Agglutinin- Texas Red | Thermo-Fisher Scientific | W21405 | Membrane staining for muscle cross section |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved