Sign In
A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This method describes a lectin-based in vitro sedimentation assay to quantify the binding affinity of glucan phosphatase and amylopectin. This co-sedimentation assay is reliable for measuring glucan phosphatase substrate binding and can be applied to various solubilized glucan substrates.
Glucan phosphatases belong to the larger family of dual specificity phosphatases (DSP) that dephosphorylate glucan substrates, such as glycogen in animals and starch in plants. The crystal structures of glucan phosphatase with model glucan substrates reveal distinct glucan-binding interfaces made of DSP and carbohydrate-binding domains. However, quantitative measurements of glucan-glucan phosphatase interactions with physiologically relevant substrates are fundamental to the biological understanding of the glucan phosphatase family of enzymes and the regulation of energy metabolism. This manuscript reports a Concanavalin A (ConA)-based in vitro sedimentation assay designed to detect the substrate binding affinity of glucan phosphatases against different glucan substrates. As a proof of concept, the dissociation constant (KD) of glucan phosphatase Arabidopsis thaliana Starch Excess4 (SEX4) and amylopectin was determined. The characterization of SEX4 mutants and other members of the glucan phosphatase family of enzymes further demonstrates the utility of this assay to assess the differential binding of protein- carbohydrate interactions. These data demonstrate the suitability of this assay to characterize a wide range of starch and glycogen interacting proteins.
Glucan phosphatases are members of a functionally diverse subfamily of dual specificity phosphatases (DSPs) within the protein tyrosine phosphatase (PTP) superfamily1. They have been found in most life forms, including widely divergent photosynthetic organisms, humans, vertebrates, and some invertebrates and protists2,3,4. Plants contain three known glucan phosphatases: Starch Excess4 (SEX4), Like Sex Four1 (LSF1), and Like Sex Four2 (LSF2)5,6,7. Plants that lack glucan phosphatases display decreased rates of transitory starch degradation and accumulation of starch in the leaves8,9. Laforin is the founding member of the glucan phosphatase family that dephosphorylates glycogen in vertebrates and humans3,10. The mutations of laforin result in neurodegenerative Lafora disease, a fatal autosomal recessive form of epilepsy11. Glucan phosphatases are necessary for glycogen and starch metabolism and have emerged as important enzymes for modulating starch content in plants and treating neurodegenerative Lafora disease12,13. Recent X-ray crystallography studies on glucan phosphatases with model glucan substrates have shed light on substrate binding and the catalytic mechanism of glucan dephosphorylation14,15,16,17. However, the current understanding of how glucan phosphatases bind to their physiological substrates is incomplete.
Starch is an insoluble polymer of glucose made of 80%-90% amylopectin and 10%-20% amylose18. The substrates for plant glucan phosphatases are phosphorylated carbohydrate molecules, such as glycogen and starch granules. The phosphorylated glucosyl residues are present at a 1:600 phosphate:glucosyl residue ratio. Interestingly, the phosphates are present only on the amylopectin molecules19. The main plant glucan phosphatase SEX4 acts on the starch granule to dephosphorylate amylopectin molecules. The X-ray crystal structure of SEX4 combined with structure-guided mutagenesis studies has demonstrated the unique substrate specificities of SEX4 for different positions within a glucan structure15. We recently showed that the biologically relevant activity of SEX4 can only be observed when acting on its solubilized amylopectin substrates20. However, understanding glucan-SEX4 interactions has proven to be difficult due to the structural complexity of the substrate, broader binding specificities, and low binding affinities between the protein and its substrates. These issues have hindered the ability to utilize methods commonly used in protein-ligand interactions, such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and enzyme-linked immunosorbent assay (ELISA)-based assays.
Interestingly, much of our understanding of carbohydrate-protein interactions have come from studying lectins. Concanavalin A (ConA) is a legume lectin family of proteins originally extracted from the jack bean. ConA binds carbohydrates with high specificity, which is advantageous for its use in drug targeting and delivery applications. The binding of ConA to a variety of substrates containing nonreducing α-D-mannosyl and α-D-glucosyl has been extensively studied19,20. Commercially available ConA-bound Sepharose beads are commonly used to purify glycoproteins and glycolipids21. ConA binds to these glucans via C3, C4, and C6 hydroxyl groups of the glucose residues. ConA-Sepharose beads have also been successfully used to measure the binding of glycogen-protein and starch-protein interactions22,23. In this study, we used ConA-Sepharose beads to develop a binding assay to measure the binding specificities of glucan phosphatase-amylopectin interactions.
Previously, a ConA-based sedimentation assay was employed to assess glucan phosphatase substrate binding ability14,20,24. In this study, the same strategy was used to develop a novel method to determine the binding affinity of glucan-glucan phosphatase and carbohydrate interactions. This method also has an advantage for investigating various solubilized carbohydrate-protein interactions.
1. Preparation of ConA-Sepharose beads
2. Preparation of amylopectin solutions
3. Preparation of ConA-Sepharose: amylopectin beads
4. Incubating SEX4 with ConA-Sepharose:amylopectin beads
5. Running SDS-PAGE gels
6. Western blotting for chemiluminescence detection14,15
NOTE: This method can be easily modified/adapted depending on the western blotting equipment that users have in their labs.
7. Data analysis
Figure 1: Overview of the ConA-Sepharose sedimentation assay workflow. (A) Preparation of ConA-Sepharose beads. (B) Incubation with amylopectin substrate. (C) Incubation with SEX4 protein. (D) Separation of bound and unbound protein fractions through centrifugation. (E) Separation of protein through SDS-PAGE. (F) Western-blot analysis. (G) Chemiluminescence detection of His-tagged SEX4 protein. Please click here to view a larger version of this figure.
One of the key features of the glucan phosphatase family of proteins is their ability to bind to glucan substrates. First, the binding capacity of SEX4 to ConA-Sepharose:amylopectin beads was analyzed using SDS-PAGE (Figure 2A). Bovine serum albumin (BSA) served as a negative control to detect any nonspecific binding of proteins to the ConA-Sepharose:amylopectin beads. The SDS-PAGE analysis of proteins showed the presence of SEX4 protein in the pellet fraction and BSA in the supernatant frac...
This study demonstrates the successful development of a novel in vitro sedimentation assay that allows determination of the binding affinity of glucan-glucan phosphatase interactions. The assay design takes advantage of the specific binding of lectin ConA to glucans via the hydroxyl residues of glucose to indirectly capture solubilized carbohydrate substrates onto Sepharose beads. This allows the separation of bound and unbound protein fractions via centrifugation and determination of the bindi...
The authors declare no conflicts of interest.
This study was supported by the National Science Foundation award MCB-2012074. The authors thank Dr. Craig W. Vander Kooi of the University of Florida Department of Biochemistry and Molecular Biology for valuable discussions and support. The authors also thank Dr. Matthew S. Gentry of the University of Florida Department of Biochemistry and Molecular Biology for his support. We would like to thank Dr. Sara Lagalwar, chair of the Skidmore College Neuroscience program, for allowing us to use the LICOR C-digit blot scanner for western blot imaging.
Name | Company | Catalog Number | Comments |
6x-His Tag monoclonal antibody (HIS.H8), HRP | Therm Fisher Scientific | MA1-21315-HRP | |
Biorad gel electrophoresis and Western blot kit | Biorad | 1703930 | |
Calcium chloride | Sigma-Aldrich | 208291 | |
C-Digit blot scanner | LICOR | 3600-00 | Blot scanner |
Complete protease inhibitor cocktail | Sigma-Aldrich | 11836170001 | |
Concanavalin A-sepharose beads | Sigma-Aldrich | C9017 | This product contains in 0.1 M acetate buffer, pH 6, containing 1 M NaCl, 1 mM CaCl2, 1 mM MnCl2, and 1 mM MgCl2 in 20% ethanol |
Centrifuge | Eppendorf | 5425R | |
Glycine | Fisher Scientific | BP381-5 | |
GraphPad Prism 8.0 software | GraphPad | Version 8.0 | Data analysis software |
HEPES | Sigma-Aldrich | H8651 | |
Image Studio | LICOR | 3600-501 | Acquisition Software |
Magnesium chloride | Sigma-Aldrich | M2670 | |
Methanol | Fisher Scientific | A452SK-4 | |
Sodium dodecyl sulfate | Fisher Scientific | PI28312 | |
Potato amylopectin | Sigma-Aldrich | A8515 | |
Precast SDSPAGE Gels | Genscript | M00653S | |
Tris base | Fisher Scientific | BP154-1 | |
Tween 20 | Fisher Scientific | MP1TWEEN201 | |
Westernsure premium chemiluminescence substrate | LI-COR | 926-95000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ISSN 2578-2037
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.