A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes a method for monitoring the progression of morphological changes over time in the uterus in an inducible mouse model of endometrial cancer using ultrasound imaging with correlation to gross and histological changes.
Uterine cancers can be studied in mice due to the ease of handling and genetic manipulation in these models. However, these studies are often limited to assessing pathology post-mortem in animals euthanized at multiple time points in different cohorts, which increases the number of mice needed for a study. Imaging mice in longitudinal studies can track the progression of disease in individual animals, reducing the number of mice needed. Advances in ultrasound technology have allowed for the detection of micrometer-level changes in tissues. Ultrasound has been used to study follicle maturation in ovaries and xenograft growth but has not been applied to morphological changes in the mouse uterus. This protocol examines the juxtaposition of pathology with in vivo imaging comparisons in an induced endometrial cancer mouse model. The features observed by ultrasound were consistent with the degree of change seen by gross pathology and histology. Ultrasound was found to be highly predictive of the observed pathology, supporting the incorporation of ultrasonography into longitudinal studies of uterine diseases such as cancer in mice.
Mice remain one of the most important animal models for reproductive disorders1,2,3. There are several genetically modified or induced rodent models of ovarian and uterine cancers. These studies typically rely on multiple cohorts euthanized at different time points to capture longitudinal trends in morphologic and pathologic changes. This prevents the ability to acquire continuous data on cancer development in an individual mouse. Additionally, without knowing the individual mouse disease progression state, intervention studies are based on predetermined time points and averaged findings of previous cohorts rather than individual thresholds for the detection of progression in a specific animal4,5. Therefore, imaging approaches that allow for longitudinal assessment in live animals are needed to facilitate preclinical models for testing new drugs or compounds and accelerate the understanding of pathobiology while also increasing the rigor and reproducibility6.
Ultrasound imaging (US) is an appealing method for the longitudinal monitoring of mouse uterine cancer progression because it is relatively facile and inexpensive compared to other imaging methods, is easy to perform, and can have remarkable resolution6,7. This non-invasive modality can capture features to the micron scale in awake mice or with mice under brief sedation using a 5-10 min exam. Ultrasound microscopy has been validated as a method to measure mouse ovarian follicle development 8 and the growth of implanted or induced neoplasia9,10,11. High-frequency US has also been used for percutaneous intrauterine injections12 and observing rat uterine change over the estrus cycle13. High-frequency US can be used with mice held on specialized stationary platforms using a rail system to hold the transducer/probe to capture high-resolution images with standardized position and pressure; however, this equipment is not available at all institutions. Hand-held transducer scanning methods can be adopted with less dedicated equipment and used for both clinical diagnostics and research applications in mice.
The question remains as to whether US imaging with hand-held, high-frequency probes could be used to monitor uterine cancer development over multiple weeks. Similar to the intestines, the rodent uterus is a thin-walled, slender structure that is very mobile within the abdomen and is contiguous through multiple tissue depths, making imaging more challenging than with relatively immobile organs such as the kidneys. This study sought to establish the correlation between tissues observed by ultrasound and histopathology, define landmarks for locating the mouse uterus, and determine the feasibility of the longitudinal assessment of endometrial cancer. This study presents data showing a qualitative correspondence between the appearance of uteri imaged by US and histopathology, as well as serial imaging of mice over several weeks. These results indicate that hand-held US can be used to monitor endometrial cancer development in mice, thus creating an opportunity for collecting individual mouse longitudinal data to study uterine cancer without the need for dedicated equipment.
All procedures and experiments involving mice were performed according to protocols approved by Johns Hopkins Animal Care and Use Committee. For all procedures, appropriate PPE was worn, including gloves and disposable isolation gowns. Precautions were taken when handling sharps, which were properly disposed of in red box sharps containers immediately after use. See the Table of Materials for details about all the materials and equipment used in this protocol.
1. Induction of endometrial cancer in iPAD (inducible Pten, Arid1a double deletion) mice with doxycycline
2. Equipment setup
3. Preparation of mice for ultrasound screening, including hair removal
4. Intraperitoneal injection of fluid to increase the contrast between organs
5. Ultrasound imaging from a dorsal approach
6. Collect images from a ventral approach
Pax8-Cre-Arid1a-Pten double deletion (iPAD) transgenic mice were maintained on a mixed genetic background (129S, BALB/C, C57BL/6), as previously described14. The mice were all fed a doxycycline feed for 2 weeks to induce Cre recombinase. In previous work by our group, doxycycline was dosed by gavage14; however, in this current study, the doxycycline feed induction method worked efficiently and reduced the stress of gavage for the mice. It is important to c...
This protocol examines the utility of ultrasound for assessing uterine morphological changes in the progression of adenocarcinoma in the uterus in mice. In this study, by following the induction of endometrial cancer in mice longitudinally, the anatomical details detected by ultrasound were found to be indicators of gross and histological pathology. This opens the door for the use of longitudinal studies with smaller numbers of mice monitored by ultrasound at multiple time points to follow the progression of uterine canc...
The authors have no conflicts of interest to disclose.
We are grateful for funding from the NCI Ovarian Cancer SPORE Program P50CA228991, post-doctoral training program 5T32OD011089, and the Richard W. TeLinde Endowment, Johns Hopkins University. The project was also partly funded by the subsidies for current expenditures to Private Institutions of Higher Education from the Promotion and Mutual Aid Corporation for Private Schools of Japan.
Name | Company | Catalog Number | Comments |
Reagents and Equipment Used for Animal Care | |||
Rodent Diet (2018, 625 Doxycycline) | Envigio | TD.01306 | Mouse Feed |
Reagents and Equipment Used for Ultrasound Imaging | |||
10 mL injectable 0.9% NaCl | Hospira, Inc | RL-7302 | Isotonic Fluid |
Absorbent Pad with Plastic Backing | Daigger | EF8313 | Absorbant Pads |
Anesthesia Induction Chambers | Harvard Apparatus | 75-2029 | Induction Chamber |
Anesthetic absorber kit with absorber canister, holder, tubing, & adapters | CWE, Inc | 13-20000 | Nose Cone and Tubing |
Aquasonic Clear Ultrasound Gel (0.25 Liter) | Parker Laboratoies | 08-03 | Ultrasound Gel |
BD Plastipak 3 mL Syringe | BD Biosciences | 309657 | Syringe |
F/Air Scavenger Charcoal Canister | OMNICON | 80120 | Scavenging System for Anesthesia |
Isoflurane, USP | Vet One | 502017 | Anesthesia Agent |
M1050 Non-Rebreathing Mobile Anesthesia Machine | Scivena Scientific | M1050 | Anestheic Vaporizer |
MX550S, 25-55 MHz Transducer, 15mm, Linear | VisualSonics | MX550S | Ultrasound Transducer (Probe) |
Nair Hair Aloe & Lanolin Hair Removal Lotion - 9.0 oz | Nair | Depilliating Cream | |
Philips Norelco Multigroomer All-in-One Trimmer Series 7000 | Philips North America | MG7750 | Clippers |
PrecisionGlide 25 G 1" Needle | BD Biosciences | 305125 | Needle |
Puralube Ophthalmic Ointment | Dechra | 17033-211-38 | Lubricating Eye Drops |
Vevo 3100 Imaging System | VisualSonics | Vevo 3100 | Ultrasound Machine |
Vevo LAB 5.6.1 | VisualSonics | Vevo LAB 5.6.1 | Ultrasound Analysis Software |
Vinyl Heating Pad with cover, 12 x 15" | Sunbeam | 731-500-000R | Heating Pad |
Wd Elements 2TB Basic Storage | Western Digital Elements | WDBU6Y0020BBK-WESN | Data Storage |
Reagents and Equipment Used for Immunohistochemistry | |||
10% w/v Formalin | Fischer Scientific | SF98-4 | Tissue Fixation Buffer |
Animal-Free Blocker and Diluent, R.T.U. | Vector Laboratories Inc. | SP5035 | Antibody Blocker |
Charged Super Frost Plus Glass Slides | VWR | 4831-703 | Tissue Mounting Slides |
Citrate Buffer | MilliporeSigma | C9999-1000ML | Epitope Retrival Buffer (pTEN) |
Cytoseal – 60 | Thermo Scientific | 8310-4 | Resin for Slide Sealing |
Gold Seal Cover Glass | Thermo Scientific | 3322 | Coverslide |
Harris Modified Hematoxylin | MilliporeSigma | HHS32-1L | Counterstain Buffer |
Hybridization Incubator (Dual Chamber) | Fischer Scientific | 13-247-30Q | Oven to Melt Parraffin |
ImmPACT DAB Substrate, Peroxidase (HRP) | Vector Laboratories Inc. | SK-4105 | Signal Development Substrate |
ImmPRESS HRP Goat Anti-Rabbit IgG Polymer Detection Kit, Peroxidase | Vector Laboratories Inc. | MP-7451 | Secondary IHC Antibody |
Oster 5712 Digital Food Steamer | Oster | 5712 | Vegetable Steamer for Epitope Retrival |
rabbit mAB anti-ARID1a | abcam | ab182560 | Primary IHC Antibody (1:1,000) |
rabbit mAB anti-PTEN | Cell Signaling | 9559 | Primary IHC Antibody (1:100) |
Scotts Tap Water Substitute | MilliporeSigma | S5134-100ML | "Blueing" Buffer |
Tissue Path IV Cassette | Fischer Scientific | 22272416 | Tissue Fixation Cassette |
Trilogy Buffer | Cell Marque | 920P-10 | Epitope Retrival Buffer (ARID1a) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved