Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The differentiation of stem cells into islet cells provides an alternative solution to conventional diabetes treatment and disease modeling. We describe a detailed stem cell culture protocol that combines a commercial differentiation kit with a previously validated method to aid in producing insulin-secreting, stem cell-derived islets in a dish.

Abstract

Differentiation of human pluripotent stem cells (hPSCs) into insulin-secreting beta cells provides material for investigating beta cell function and diabetes treatment. However, challenges remain in obtaining stem cell-derived beta cells that adequately mimic native human beta cells. Building upon previous studies, hPSC-derived islet cells have been generated to create a protocol with improved differentiation outcomes and consistency. The protocol described here utilizes a pancreatic progenitor kit during Stages 1-4, followed by a protocol modified from a paper previously published in 2014 (termed "R-protocol" hereafter) during Stages 5-7. Detailed procedures for using the pancreatic progenitor kit and 400 µm diameter microwell plates to generate pancreatic progenitor clusters, R-protocol for endocrine differentiation in a 96-well static suspension format, and in vitro characterization and functional evaluation of hPSC-derived islets, are included. The complete protocol takes 1 week for initial hPSC expansion followed by ~5 weeks to obtain insulin-producing hPSC islets. Personnel with basic stem cell culture techniques and training in biological assays can reproduce this protocol.

Introduction

Pancreatic beta cells secrete insulin responding to rises in blood glucose levels. Patients lacking sufficient insulin production due to the autoimmune destruction of beta cells in type 1 diabetes (T1D)1, or due to beta cell dysfunction in type 2 diabetes (T2D)2, are typically treated with the administration of exogenous insulin. Despite this life-saving therapy, it cannot precisely match the exquisite control of blood glucose as achieved by dynamic insulin secretion from bona fide beta cells. As such, patients often suffer the consequences of life-threatening hypoglycemic episodes and other complications resulting from ....

Protocol

This protocol is based on work with hPSC lines, including H1, HUES4 PDXeG, and Mel1 INSGFP/W, in feeder-free conditions. A step-by-step procedure is detailed in this section, with supporting data from the differentiation of Mel1 INSGFP/W in the representative results section. We recommend that further optimization is needed when working with other hPSC lines that are not stated here. See the Table of Materials for details related to all reagents and solutions used in this protocol.<.......

Representative Results

We developed a hybrid strategy to differentiate stem cells into insulin-secreting hPSC-islets in seven steps, which utilizes a pancreatic progenitor kit for the first four stages in planar culture, followed by a modified protocol built upon a previously reported method6 in a static suspension culture for the last three stages (Figure 1). With this protocol, ensuring a near confluency (90%-100%) culture at 24 h after cell seeding (Stage 0) is critical for initiating an.......

Discussion

This paper describes a seven-stage hybrid protocol that allows for the generation of hPSC islets capable of secreting insulin upon glucose challenge within 40 days of culture in vitro. Among these multiple steps, efficient induction of definitive endoderm is believed to set an important starting point for the final differentiation outcomes18,27,28. In the manufacturer's protocol, a seeding density at 2.6 × 10

Acknowledgements

We gratefully acknowledge the support from STEMCELL Technologies, Michael Smith Health Research BC, Stem Cell Network, JDRF, and the Canadian Institutes of Health Research. Jia Zhao and Shenghui Liang are recipients of the Michael Smith Health Research BC Trainee Award. Mitchell J.S. Braam is a recipient of the Mitacs Accelerate Fellowship. Diepiriye G. Iworima is a recipient of the Alexander Graham Bell Canada Graduate Scholarship and the CFUW 1989 Ecole Polytechnique Commemorative Award. We sincerely thank Dr. Edouard G. Stanley from MCRI and Monash University for sharing the Mel1 INS GFP/W line and the Alberta Diabetes Institute Islet Core for isolating ....

Materials

NameCompanyCatalog NumberComments
3,3’,5-Triiodo-L-thyronine (T3)SigmaT6397Thyroid hormone
4% PFA solutionSanta Cruz Biotechnologysc-281692Should be handled in fume hood
96-Well, Ultralow Attachment, flat bottomCorning Costar (VWR)CLS3474Flat bottom; for static suspension culture in the last three stages
AccutaseSTEMCELL Technologies07920Dissociation reagent for Stage 4 cells
Aggrewell400 platesSTEMCELL Technologies34415400 µm diameter microwell plates
Aggrewell800 platesSTEMCELL Technologies34815800 µm diameter microwell plates
Alexa Fluor 488 Goat anti-Human FOXA2 (goat IgG)R&D SystemsIC2400G1:100 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 488 Goat IgG Isotype ControlR&D SystemsIC108G1:100 in flow cytometry
Alexa Fluor 488 Mouse anti-Human SST (mouse IgG2B)BD Sciences5660321:250 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 488 Mouse IgG2B Isotype ControlR&D SystemsIC0041G1:500 in flow cytometry
Alexa Fluor 647 Mouse anti-Human C-peptide (mouse IgG1κ)BD Pharmingen5658311:2,000 in flow cytometry; used for assaying Stage 7 cells
Alexa Fluor 647 Mouse anti-Human INS (mouse IgG1κ)BD Sciences5656891:2,000 in flow cytometry
Alexa Fluor 647 Mouse anti-Human NKX6.1 (mouse IgG1κ)BD Sciences5633381:33 in flow cytometry; used for assaying Stage 4 cells
Alexa Fluor 647 Mouse anti-Human SOX17 (mouse IgG1κ)BD Sciences5625941:50 in flow cytometry; used for assaying Stage 1 cells
Alexa Fluor 647 Mouse IgG1κ Isotype ControlBD Sciences5577141:50 in flow cytometry
ALK5i IICayman Chemicals14794TGF-beta signaling inhibitor
Anti-Adherence Rinsing Solution STEMCELL Technologies7010Microwell Rinsing Solution
Assay chamberCellvisD35-10-1-NFor static GSIS and confocal imaging purposes
Bovine serum albumin (BSA)Thermo Fisher ScientificBP1600-100For immunostaining procedure
CK19 antibodyDAKOM08881:50 in whole mount immunofluorescence
D-glucoseSigmaG8769Medium supplement
DAPISigmaD9542For nuclear counterstaining
DMEM/F12, HEPESThermo Fisher Scientific11330032Matrix diluting solution
Donkey anti-goat Alexa Fluor 555Life technologiesA214321:500 in whole mount immunofluorescence
Donkey anti-goat Alexa Fluor 647Life technologiesA214471:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 555Life technologiesA315701:500 in whole mount immunofluorescence
Donkey anti-mouse Alexa Fluor 647Life technologiesA315711:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 555Life technologiesA315721:500 in whole mount immunofluorescence
Donkey anti-rabbit Alexa Fluor 647Life technologiesA315731:500 in whole mount immunofluorescence
Donkey anti-sheep Alexa Fluor 647Life technologiesA214481:500 in whole mount immunofluorescence
DPBSSigmaD8537Without Ca2+ and Mg2+
ELISA, insulin, humanAlpco80-INSHU-E01.1For human insulin measurement
Fatty acid-free BSAProliant68700Medium supplement
Fixation and Permeabilization Solution KitBD Sciences554714Fix/Perm and 10x Perm/Wash solutions included
Gentle Cell Dissociation ReagentSTEMCELL Technologies7174For clump passaging hPSCs during maintenance culture
Glucagon antibodySigmaG26541:400 in whole mount immunofluorescence
GLUT1 antibodyThermo Fisher ScientificPA1-377821:200 in whole mount immunofluorescence
GlutaMAX-I (100x)Gibco35050061L-glutamine supplement
GlycerolThermo Fisher ScientificG33-4For tissue clearing and mounting
GSi XXSigma Millipore565789Notch inhibitor
HeparinSigmaH3149Medium supplement
ITS-X (100x)Thermo Fisher Scientific51500056Insulin-Transferrin-Selenium-Ethanolamine; medium supplement
LDN193189 STEMCELL Technologies72147BMP antagonist
MAFA antibodyAbcamab264051:200 in whole mount immunofluorescence
Matrigel, hESC-qualifiedThermo Fisher Scientific08-774-552Extracellular matrix for vessel surface coating
MCDB131 mediumLife technologies10372019Base medium
mTeSR1 Complete KitSTEMCELL Technologies85850stem cell medium and 5x supplement included
N-Cys (N-acetyl cysteine)SigmaA9165Antioxidant
NaHCO3SigmaS6297Medium supplement
NEUROD1 antibodyR&D SystemsAF27461:20 in whole mount immunofluorescence
NKX6.1 antibodyDSHBF55A12-c1:50 in whole mount immunofluorescence
Pancreatic polypeptide antibodyR&D SystemsAF62971:200 in whole mount immunofluorescence
PBSSigmaD8662With Ca2+ and Mg2+
PDX1 antibodyAbcamab472671:200 in whole mount immunofluorescence
PE Mouse anti-Human GCG (mouse IgG1κ)BD Sciences5658601:2,000 in flow cytometry; used for assaying Stage 7 cells
PE Mouse anti-Human NKX6.1 (mouse IgG1k)BD Sciences5630231:250 in flow cytometry
PE Mouse anti-Human PDX1 (mouse IgG1k)BD Sciences5621611:200 in flow cytometry; used for assaying Stage 4 cells
PE Mouse IgG1κ Isotype ControlBD Sciences5546801:2,000 in flow cytometry
PE Mouse-Human Chromogranin A (CHGA, mouse IgG1k)BD Sciences5645631:200 in flow cytometry
R428 Cayman Chemicals21523AXL tyrosine kinase inhibitor
Retinoid acid, all-transSigmaR2625Light-sensitive
RIPA lysis buffer, 10xSigma20-188For hormone extraction
SANT-1SigmaS4572SHH inhibitor
SLC18A1 antibodySigmaHPA0637971:200 in whole mount immunofluorescence
Somatostatin antibodySigmaHPA0194721:100 in whole mount immunofluorescence
STEMdiff Pancreatic Progenitor KitSTEMCELL Technologies05120Basal media and supplements included
Synaptophysin antibodyNovusNB120-166591:25 in whole mount immunofluorescence
Triton X-100SigmaX100For permeabilization
Trolox Sigma Millipore648471Vitamin E analog
TrypLE Enzyme ExpressLife technologies12604-021cell dissociation enzyme reagent for single cell passaging hPSCs
Trypsin1/2/3 antibodyR&D SystemsAF35861:25 in whole mount immunofluorescence
Y-27632STEMCELL Technologies72304ROCK inhibitor
Zinc sulfateSigmaZ0251Medium supplement

References

  1. Atkinson, M. A., Eisenbarth, G. S., Michels, A. W. Type 1 diabetes. Lancet. 383 (9911), 69-82 (2014).
  2. Petersen, M. C., Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiological Reviews. 98 (4), 2133-2223 (2018).

Explore More Articles

Human Pluripotent Stem CellsInsulin producing Islet ClustersStatic Suspension CulturePancreatic ProgenitorsIslet like ClustersHESC qualified MatrigelCell DissociationStem Cell CultureStage 1A MediumStage 1B MediumStage 2A MediumStage 2B MediumStage 3 MediumStage 4 MediumAnti adherence Rinsing SolutionMicrowell Plate

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved