A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol describes a method for establishing a mouse model of silicosis through repeated exposure to silica suspensions via a nasal drip. This model can efficiently, conveniently, and flexibly mimic the pathological process of human silicosis with high repeatability and economy.
Silicosis can be caused by exposure to respiratory crystalline silica dust (CSD) in an industrial environment. The pathophysiology, screening, and treatment of silicosis in humans have all been extensively studied using the mouse silicosis model. By repeatedly making mice inhale CSD into their lungs, the mice can mimic the clinical symptoms of human silicosis. This methodology is practical and efficient in terms of time and output and does not cause mechanical injury to the upper respiratory tract due to surgery. Furthermore, this model can successfully mimic acute/chronic transformation process of silicosis. The main procedures were as follows. The sterilized 1-5 µm CSD powder was fully ground, suspended in saline, and dispersed in an ultrasonic water bath for 30 min. Mice under isoflurane-induced anesthesia switched from shallow rapid breathing to deep, slow aspiration for approximately 2 s. The mouse was placed in the palm of a hand, and the thumb tip gently touched the lip edge of the mouse's jaw to straighten the airway. After each exhalation, the mice breathed in the silica suspension drop by drop through one nostril, completing the process within 4-8 s. After the mice's breathing had stabilized, their chest was stroked and caressed to prevent the inhaled CSD from being coughed up. The mice were then returned to the cage. In conclusion, this model can quantify CSD along the typical physiological passage of tiny particles into the lung, from the upper respiratory tract to the terminal bronchioles and alveoli. It can also replicate the recurrent exposure of employees due to work. The model can be performed by one person and does not need expensive equipment. It conveniently and effectively simulates the disease features of human silicosis with high repeatability.
Workers are inevitably exposed to irregular crystalline silica dust (CSD), which can be inhaled and is more toxic in numerous occupational contexts, including mining, pottery, glass, quartz processing, and concrete1,2. A chronic dust inhalation condition known as silicosis causes progressive lung fibrosis3. According to epidemiological data, the incidence of silicosis has been declining globally over the past few decades, but in recent years, it has been increasing and affecting younger people4,5,6. The underlying mechanism of silicosis presents a significant challenge for scientific research due to its insidious onset and protracted incubation period. It is still unknown how silicosis develops. Furthermore, no current medications can stop the progression of silicosis and reverse pulmonary fibrosis.
The current mouse models for silicosis involve tracheal ingestion of a mixed suspension of CSD. For example, administering CSD into the lungs by adopting the cervical trachea trauma after anesthesia does not comply with repeated human exposure to dye dust7. The impact of exposure to ambient dust on individuals can be studied by exposing them to CSD in the form of aerosols, which more accurately reflects the environmental concentrations of this toxic substance8. However, environmental CSD cannot simply be inhaled directly into the lungs due to the unique physiological structure of the mouse nose9. Moreover, the equipment associated with this technology is expensive, which has caused researchers to re-evaluate the mouse silicosis model10. By inhaling CSD suspension through a nasal drip five times within 2 weeks, it was possible to build a dynamic model of silicosis. This model is consistent and safe while being easy to use. It is important to note that this study allows for repeated inhalation of CSD in mice. The mouse silicosis model created through this procedure is expected to be more beneficial for research requirements.
All procedures followed the guidelines of the National Institutes of Health's Guide for the Care and Use of Laboratory Animals (NIH Publication No. 8023, revised 1978) and were approved by the Institutional Animal Care and Use Committee at the Medical School of Anhui University of Science and Technology.
1. Managing and feeding mice
2. Preparing the CSD suspension
3. Administering nasal drips to mouse
4. Collecting the lung tissues and preparing a paraffin section
5. Performing hematoxylin and eosin (HE) staining
6. Performing Masson staining
7. Performing Sirius red staining
8. Performing immunohistochemistry
9. Performing western blotting analysis
The potential pathogenesis of silicosis in mice was investigated using the proposed method. We found that the body weight of the mice in the experimental group decreased significantly relative to the control group and that the body weight recovered slowly after cessation of exposure. Due to the optimized dose used here, no mortality was observed in silica-exposed mice in this experiment. The technical roadmap of repeated nasal drip to CSD is shown in (Figure 1). The previously described proc...
Silicosis mouse models are crucial for studying the pathogenesis and treatment of silicosis. This protocol describes a method for preparing a model of silicosis in mice through repeated nasal exposure. This method allows for the study of the pathological characteristics of silicosis induced by different exposure times. Mice were anesthetized on a ventilator, and their respiratory rate was monitored. The initial short, fast breathing rate gradually slowed and deepened over time. The anesthesia caused the mice's muscles to...
The authors declare no conflicts of interest.
This study was supported by the University Synergy Innovation Program of Anhui Province (GXXT-2021-077) and the Anhui University of Science and Technology Graduate Innovation Fund (2021CX2120).
Name | Company | Catalog Number | Comments |
0.5 mL tube | Biosharp | BS-05-M | |
10% formalin neutral fixative | Nanchang Yulu Experimental Equipment Co. | NA | |
Adobe Illustrator | Adobe | NA | |
Alcohol disinfectant | Xintai Kanyuan Disinfection Products Co. | NA | |
CD68 | Abcam | ab125212 | |
Citrate antigen retrieval solution | biosharp life science | BL619A | |
DAB chromogenic kit | NJJCBio | W026-1-1 | |
Dimethyl benzene | West Asia Chemical Technology (Shandong) Co | NA | |
Enhanced BCA protein assay kit | Beyotime Biotechnology | P0009 | |
Hematoxylin and Eosin (H&E) | Beyotime Biotechnology | C0105S | |
HRP substrate | Millipore Corporation | P90720 | |
HRP-conjugated Affinipure Goat Anti-Rabbit IgG(H+L) | Proteintech | Sa00001-2 | |
Iceacetic acid | West Asia Chemical Technology (Shandong) Co | NA | |
ImageJ | NIH | NA | |
Isoflurane | RWD Life Science | R510-22 | |
Masson's Trichrome stain kit | Solarbio | G1340 | |
Methanol | Macklin | NA | |
Microtubes | Millipore | AXYMCT150CS | |
NF-κB p65 | Cell Signaling Technology | 8242S | |
Oscillatory thermostatic metal bath | Abson | NA | |
Paraffin embedding machine | Precision (Changzhou) Medical Equipment Co. | PBM-A | |
Paraffin Slicer | Jinhua Kratai Instruments Co. | NA | |
Phosphate buffer (PBS) | Biosharp | BL601A | |
Physiological saline | The First People's Hospital of Huainan City | NA | |
Pipettes | Eppendorf | NA | |
PMSF | Beyotime Biotechnological | ST505 | |
Polarized light microscope | Olympus | BX51 | |
Precision balance | Acculab | ALC-110.4 | |
Prism7.0 | GraphPad | Version 7.0 | |
PVDF membranes | Millipore | 3010040001 | |
RIPA lysis buffer | Beyotime Biotechnology | P0013B | |
RODI IOT intelligent multifunctional water purification system | RSJ | RODI-220BN | |
Scilogex SK-D1807-E 3D Shaker | Scilogex | NA | |
SDS-PAGE gel preparation kit | Beyotime Biotechnology | P0012A | |
Silicon dioxid | Sigma | #BCBV6865 | |
Sirius red staining | Nanjing SenBeiJia Biological Technology Co., Ltd. | 181012 | |
Small animal anesthesia machine | Anhui Yaokun Biotech Co., Ltd. | ZL-04A | |
Universal Pipette Tips (0.1–10 µL) | KIRGEN | KG1011 | |
Universal Pipette Tips (100–1000 µL) | KIRGEN | KG1313 | |
Universal Pipette Tips (1–200 µL) | KIRGEN | KG1212 | |
Vortex mixer | VWR | NA | |
ZEISS GeminiSEM 500 | Zeiss Germany | SEM 500 | |
β-actin | Bioss | bs-0061R |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved