A subscription to JoVE is required to view this content. Sign in or start your free trial.
The current methods describe a non-ratiometric approach for high-resolution, sub-compartmental calcium imaging in vivo in Caenorhabditis elegans using readily available genetically encoded calcium indicators.
Calcium (Ca2+) imaging has been largely used to examine neuronal activity, but it is becoming increasingly clear that subcellular Ca2+ handling is a crucial component of intracellular signaling. The visualization of subcellular Ca2+ dynamics in vivo, where neurons can be studied in their native, intact circuitry, has proven technically challenging in complex nervous systems. The transparency and relatively simple nervous system of the nematode Caenorhabditis elegans enable the cell-specific expression and in vivo visualization of fluorescent tags and indicators. Among these are fluorescent indicators that have been modified for use in the cytoplasm as well as various subcellular compartments, such as the mitochondria. This protocol enables non-ratiometric Ca2+ imaging in vivo with a subcellular resolution that permits the analysis of Ca2+ dynamics down to the level of individual dendritic spines and mitochondria. Here, two available genetically encoded indicators with different Ca2+ affinities are used to demonstrate the use of this protocol for measuring relative Ca2+ levels within the cytoplasm or mitochondrial matrix in a single pair of excitatory interneurons (AVA). Together with the genetic manipulations and longitudinal observations possible in C. elegans, this imaging protocol may be useful for answering questions regarding how Ca2+ handling regulates neuronal function and plasticity.
Calcium ions (Ca2+) are highly versatile carriers of information in many cell types. In neurons, Ca2+ is responsible for the activity-dependent release of neurotransmitters, the regulation of cytoskeletal motility, the fine-tuning of metabolic processes, as well as many other mechanisms required for proper neuronal maintenance and function1,2. To ensure effective intracellular signaling, neurons must maintain low basal Ca2+ levels in their cytoplasm3. This is accomplished by cooperative Ca2+ handling mechanisms, including the uptake of Ca....
1. Creating transgenic strains
These two protocols enable the rapid acquisition of differential Ca2+ levels within the subcellular regions and organelles of individual neurites in vivo with high spatial resolution. The first protocol allows for the measurement of cytoplasmic Ca2+ with high temporal and spatial resolution. This is demonstrated here using the cell-specific expression of GCaMP6f in the glutamatergic AVA command interneurons15, whose neurites run the entire length of the ventral nerve.......
The first consideration when implementing the method described involves the selection of a Ca2+ indicator with ideal characteristics for the given research question. Cytoplasmic Ca2+ indicators typically have a high affinity for Ca2+, and the sensitivity of these indicators to Ca2+ is inversely related to the kinetics (on/off rate)16,17. This means that either Ca2+ sensitivity or kinetics will need to be.......
This work was supported by the National Institutes of Health (NIH) (R01- NS115947 awarded to F. Hoerndli). We would also like to thank Dr. Attila Stetak for the pAS1 plasmid.
....Name | Company | Catalog Number | Comments |
100x/1.40 Oil objective | Olympus | UPlanSApo | |
10x/0.40 Objective | Olympus | UPlanSApo | |
22 mm x 22 mm Cover glass | VWR | 48366-227 | |
Agarose SFR | VWR | J234-100G | |
Beam homogenizer | Andor Technologies | Borealis upgrade to CSU-X1 | |
CleanBench laboratory table | TMC | With vibration control | |
Disposable culture tubes | VWR | 47729-572 | 13 mm x 100 mm |
Environmental chamber | Thermo Scientific | 3940 | Set to 20 °C |
Filter wheel or slider | ASI | For 25 mm diameter filters | |
FJH 185 | Caenorhabditis Genetics Center | FJH 185 | Worm strain |
FJH 597 | Caenorhabditis Genetics Center | FJH 597 | Worm strain |
GFP bandpass emission filter | Chroma | 525 ± 50 nm (25 mm diameter) | |
ILE laser combiner | Andor Technologies | 4 laser lines | |
ILE solid state 488 nm laser | Andor Technologies | 50 mW | |
ImageJ | National Institutes of Health | Version 1.52a | |
IX83 Spinning disk confocal microscope | Olympus | With Yokogawa CSU-X1 spinning disc | |
iXon Ultra EMCCD camera | Andor Technologies | ||
Low auto-fluorescence immersion oil | Olympus | Z-81226 | |
MetaMorph | Molecular Devices | Version 7.10.1 | |
Microscope control box | Olympus | IX3-CBH | |
Muscimol | MP Biomedical / Sigma | 02195336-CF | |
pAS1 | AddGene | 194970 | Plasmid |
pBSKS | Stratagene | ||
pCT61 | Plasmid available from Hoerndli/Maricq lab upon request | ||
pJM23 | Plasmid available from Hoerndli/Maricq lab upon request | ||
pKK1 | AddGene | 194969 | Plasmid |
Polybead microspheres | Polysciences Inc. | 00876-15 | 0.094 µm |
Stability chamber | Norlake Scientific | NSRI241WSW/8H | Set to 15 °C |
Stage controller | ASI | With filter wheel control | |
Standard microscope slide | Premiere | 9108W-E | 75 mm x 25 mm x 1 mm |
Touch panel controller | Olympus | I3-TPC | |
Z-drift corrector | Olympus | IX3-ZDC2 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved