Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The determination of colony-forming units (CFU) is the gold-standard technique for quantifying bacteria, including Mycobacterium tuberculosis which can take weeks to form visible colonies. Here we describe a micro-CFU for CFU determination with increased time efficiency, reduced lab space and reagent cost, and scalability to medium and high throughput experiments.

Abstract

Tuberculosis (TB), the leading cause of death worldwide by an infectious agent, killed 1.6 million people in 2022, only being surpassed by COVID-19 during the 2019-2021 pandemic. The disease is caused by the bacterium Mycobacterium tuberculosis (M.tb). The Mycobacterium bovis strain Bacillus Calmette-Guérin (BCG), the only TB vaccine, is the oldest licensed vaccine in the world, still in use. Currently, there are 12 vaccines in clinical trials and dozens of vaccines under pre-clinical development. The method of choice used to assess the efficacy of TB vaccines in pre-clinical studies is the enumeration of bacterial colonies by the colony-forming units (CFU) assay. This time-consuming assay takes 4 to 6 weeks to conclude, requires substantial laboratory and incubator space, has high reagent costs, and is prone to contamination. Here we describe an optimized method for colony enumeration, the micro-CFU (mCFU), that offers a simple and rapid solution to analyze M.tb vaccine efficacy results. The mCFU assay requires tenfold fewer reagents, reduces the incubation period threefold, taking 1 to 2 weeks to conclude, reduces lab space and reagent cost, and minimizes the health and safety risks associated with working with large numbers of M.tb. Moreover, to evaluate the efficacy of a TB vaccine, samples may be obtained from a variety of sources, including tissues from vaccinated animals infected with Mycobacteria. We also describe an optimized method to produce a unicellular, uniform, and high-quality mycobacterial culture for infection studies. Finally, we propose that these methods should be universally adopted for pre-clinical studies of vaccine efficacy determination, ultimately leading to time reduction in the development of vaccines against TB.

Introduction

Tuberculosis (TB) is the leading cause of death worldwide by a single infectious agent, bacterium Mycobacterium tuberculosis (M.tb), killing more people than any other pathogen. In 2021, TB was responsible for 1.6 million deaths and was surpassed by COVID-19 during the 2019-2021 pandemic1. Moreover, according to the World Health Organization´s global TB report of 2022, the COVID-19 pandemic was responsible for an increase in new TB cases. The WHO also reports large drops in the number of people diagnosed with TB during this period, which could increase further the number of TB cases1.

Protocol

NOTE: The protocol described here is for BCG but can be applied to any Mycobacteria. BCG can be used as a surrogate bacterium for TB experiments when BSL3 facilities are not available22. The following procedures using BCG should be performed under a biosafety level 2 (BSL2) laboratory and follow the appropriate biosafety guidelines and good laboratory practices for the manipulation of hazard group 2 microorganisms.

1. Culture media preparation

    <.......

Representative Results

The mCFU assay described here increases the amount of information that can be retrieved from a single Petri dish to at least 96-fold. Figure 5 depicts a comparison of two drug-delivery methods for the repurposed use of saquinavir (SQV)31,32 as a host-directed drug to treat tuberculosis. In this assay, four different strains of Mycobacterium tuberculosis were used to infect primary human macrophages. M. tubercul.......

Discussion

TB is an important public health problem with increasing importance, particularly in low and middle-income countries. The disruption of healthcare settings to diagnose and treat TB during the COVID-19 pandemic caused a negative impact on the incidence of new cases1. In addition, the multi-drug and extensively-drug resistant M.tb strains, and the co-infection of M.tb and HIV must be urgently addressed to control this epidemic1,3.......

Disclosures

DP and PJGB declare that the study was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgements

This work was supported by internal funding from the Faculty of Medicine, Universidade Católica Portuguesa, and external funding from Fundação para a Ciência e a Tecnologia (FCT), under the grants UIDP/04279/2020, UIDB/04279/2020, and EXPL/SAU-INF/0742/2021.

....

Materials

NameCompanyCatalog NumberComments
96-well platesVWR734-2781
DSLR 15-55 mm lensNikonAF-P DX NIKKOR 18-55mm f/3.5-5.6G VR
DSLR cameraNikonD3400
DSLR macro lensSigmaMACRO 105mm F2.8 EX DG OS HSM
Fetal calf serumGibco10270106
Fiji Softwarehttps://fiji.sc/Fiji is an open-source software supported by several laboratories, institutions, and individuals. All the required plugins are included.
Igepal CA-630Sigma-Aldrich18896
L-glutamineGibco25030-081
Middlebrook 7H10BD262710
Middlebrook 7H9BD271310
Multichannel pipette (0.5 - 10 µl)GilsonFA10013
Multichannel pipette (20 - 200 µl)GilsonFA10011
Mycobacterium bovis BCG American Type Culture CollectionATCC35734strain TMC 1011 [BCG Pasteur]
OADC enrichmentBD211886
Phosphate buffered saline (PBS)NZYTechMB25201
RPMI 1640 mediumGibco21875091
Sodium pyruvateGibco11360-070
Spectrophotometer UV-6300PCVWR634-6041
Square Petri dish 120 x 120 mmCorningBP124-05
TyloxapolSigma-AldrichT8761
Ultrasound bath Elma P 30 HVWR142-0051

References

  1. World Health Organization. . Global Tuberculosis Report 2022. , (2022).
  2. Bettencourt, P. J. G., Joosten, S. A., Lindestam Arlehamn, C. S., Behr, M. A., Locht, C., Neyrolles, O. 100 years of the Bacillus Calmette-Guérin vaccine. Vaccine. 39 (50), 7221-7222 (2021).....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Micro Colony Forming Unit AssayTuberculosisVaccine EfficacyCFU DeterminationMycobacterium TuberculosisBCG VaccinePreclinical StudiesBacterial EnumerationHigh throughput Screening

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved