Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article aims to present an optimized method for assessing venous thrombosis in a mouse cancer model, using vascular clips to achieve venous ligation. Optimization minimizes variability in thrombosis-related measurements and enhances relevance to human cancer-associated venous thrombosis.

Abstract

This methodology paper highlights the surgical nuances of a rodent model of venous thrombosis, specifically in the context of cancer-associated thrombosis (CAT). Deep venous thrombosis is a common complication in cancer survivors and can be potentially fatal. The current murine venous thrombosis models typically involve a complete or partial mechanical occlusion of the inferior vena cava (IVC) using a suture. This procedure induces a total or partial stasis of blood and endothelial damage, triggering thrombogenesis. The current models have limitations such as higher variability in clot weights, significant mortality rate, and prolonged learning curve. This report introduces surgical refinements using vascular clips to address some of these limitations. Using a syngeneic colon cancer xenograft mouse model, we employed customized vascular clips to ligate the infrarenal vena cava. These clips allow residual lip space similar to a 5-0 polypropylene suture after IVC ligations. Mice with the suture method served as controls. The vascular clip method resulted in a consistent reproducible partial vascular occlusion and greater clot weights with less variability than the suture method. The larger clot weights, greater clot mass, and clot to the IVC luminal surface area were expected due to the higher pressure profile of the vascular clips compared to a 6-0 polypropylene suture. The approach was validated by gray scale ultrasonography, which revealed consistently greater clot mass in the infrarenal vena cava with vascular clips compared to the suture method. These observations were further substantiated with the immunofluorescence staining. This study offers an improved method to generate a venous thrombosis model in mice, which can be employed to deepen the mechanistic understanding of CAT and in translational research such as drug discovery.

Introduction

Cancer-associated venous thromboembolism (VTE)
Venous thromboembolism (VTE) risk is 4 to 7 times higher in cancer survivors compared to the general population1,2,3. This condition proves fatal in one out of seven patients with cancer. The incidence of VTE varies depending on the type of cancer and the tumor burden and is highest among patients with pancreatic and gastric cancers4.

Cancer-associated VTE in cancer patients has prognostic significance. It is associated with unfavorable overall survival in....

Protocol

For this study, 16 female C57Bl6/J mice, 8-12 weeks in age, and a body weight of 20 to 25 g were used. The mice were housed under standard conditions and were fed with chow and water ad libitum. This study was performed with the approval of the Institutional Animal Care and Use Committee (IACUC) at Boston University. The open procedures described here were undertaken in a sterile condition.

1. Xenograft model

  1. Cell culture
    1. Prior to heterotopic s.......

Representative Results

A group of female C57Bl6/J mice, 8-12 weeks of age, were injected with MC-38 cells at the logarithmic phase of the cell growth. The xenografts grew rapidly between the third- and fourth -weeks post-injection18. Once the tumors reached an average volume of 400 mm3, mice were randomized to the control and experimental groups. The control group underwent IVC ligation with suture, while the experimental mice were subjected to IVC ligation with vascular clip application. The tumor volumes in.......

Discussion

In a syngeneic xenograft colon cancer model, we observe higher thrombogenicity and expressions of coagulation markers in the experimental group compared to the control group. Importantly, the variance in all these parameters was lower in the experimental group compared to the control group. The modification involved introducing a vascular clip with a specific pressure profile at the confluence point of the IVC and the left renal vein. The clip was placed over a spacer, which was a 5-0 polypropylene suture. This modificat.......

Acknowledgements

This work was supported by AHA Cardio-oncology SFRN CAT-HD Center grant 857078 (KR, VCC, XY, and SL) and R01HL166608 (KR and VCC).

....

Materials

NameCompanyCatalog NumberComments
Buprenorphine 0.3 mg/mLPAR Pharmaceutical NDC 42023-179-05
C57BL/6J miceThe Jackson LabIMSR_JAX:000664
CaliperVWR International, Radnor, PA12777-830
CD31AbcamAb9498
Cell CounterMOXIEMXZ000
Clamp Fine Science Tools   13002-10
Clips ASSI.B2V Single Clamp, General Purpose,Accurate Surgical & Scientific InstrumentsPR 2 144.50 289.00
Dumont #5SF ForcepsFine Science Tools11252-00
FibrinMilliporeMABS2155-100UG
Fine Scissors - Large LoopsFine Science Tools14040-10
Forceps Fine Science Tools11002-12
Hill HemostatFine Science Tools13111-12
Isoflurane, USP CovetrusNDC 11695-6777-2
MC-38 cellSigma AldrichSCC172
MicroscopeNikon Eclipse Inverted MicroscopeTE2000
Scissors Fine Science Tools  14079-10
Suture- VicrylAD-Surgical#L-G330R24
Suture-Nylon 2-0Ethilon664H
Suture-Prolene 5-0Ethicon8661G
Suture-Prolene 6-0EthiconPDP127
VEV03100VisualSonicsFujiFilm
Vitrogel Matrigel MatrixThe Well BioscienceVHM01 

References

  1. Blom, J. W., et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. Journal of Thrombosis and Haemostasis. 4 (3), 529-535 (2006).
  2. Gabre, J., et al.

Explore More Articles

Venous ThrombosisMouse ModelCancer associated ThrombosisSyngeneic Colon Cancer XenograftVascular ClipsInferior Vena CavaSurgical TechniqueMechanistic UnderstandingDrug DiscoveryCancer SurvivorsDeep Venous ThrombosisSurgical RefinementsEndothelial DamageThrombogenesisReproducibilityTranslational Research

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved