Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the cell culturing of human midbrain dopaminergic neurons, followed by immunological staining and the generation of neuronal phenotypic profiles from acquired microscopic high-content images allowing the identification of phenotypic variations due to genetic or chemical modulations.

Abstract

Parkinson's disease (PD) is linked to a range of cell biological processes that cause midbrain dopaminergic (mDA) neuron loss. Many current in vitro PD cellular models lack complexity and do not take multiple phenotypes into account. Phenotypic profiling in human induced pluripotent stem cell (iPSC)-derived mDA neurons can address these shortcomings by simultaneously measuring a range of neuronal phenotypes in a PD-relevant cell type in parallel. Here, we describe a protocol to obtain and analyze phenotypic profiles from commercially available human mDA neurons. A neuron-specific fluorescent staining panel is used to visualize the nuclear, α-synuclein, Tyrosine hydroxylase (TH), and Microtubule-associated protein 2 (MAP2) related phenotypes. The described phenotypic profiling protocol is scalable as it uses 384-well plates, automatic liquid handling and high-throughput microscopy. The utility of the protocol is exemplified using healthy donor mDA neurons and mDA neurons carrying the PD-linked G2019S mutation in the Leucine-rich repeat kinase 2 (LRRK2) gene. Both cell lines were treated with the LRRK2 kinase inhibitor PFE-360 and phenotypic changes were measured. Additionally, we demonstrate how multidimensional phenotypic profiles can be analyzed using clustering or machine learning-driven supervised classification methods. The described protocol will particularly interest researchers working on neuronal disease modeling or studying chemical compound effects in human neurons.

Introduction

A variety of cell biological processes are disturbed in Parkinson's disease (PD). For example, mitochondrial dysfunction, oxidative stress, protein degradation defects, disruption of vesicular trafficking and endolysosomal function have been associated with midbrain dopaminergic (mDA) neuron loss, are commonly observed in PD1. Therefore, PD appears to involve multiple disease mechanisms that can interact with and worsen each other. One useful way to investigate this mechanistic interplay is the creation of a comprehensive phenotypic fingerprint or profile of midbrain dopaminergic (mDA) neurons.

Phenotypic profili....

Protocol

1. Preparation of medium and plates for neuron seeding (Day 1)

  1. To prepare the plates for neuron seeding on Day-1, warm Laminin to room temperature (RT) just before use. Prepare the Laminin solution by diluting the Laminin stock solution (0.1 mg/mL) 1/10 in cold PBS+/+ (with Ca2+ and Mg2+).
    NOTE: All reagents are listed in the Table of Materials. The compositions of solutions and buffers are described in Tables 1-4.
  2. Then,.......

Representative Results

Phenotypic profiling in mDA neurons is an efficient way to quantify multiple aspects of cellular biology and their changes during the experimental modulation. To exemplify this methodology, this study made use of cryopreserved LRRK2 G2019S and healthy donor mDA neurons. These neurons have been differentiated for approximately 37 days, are post-mitotic and express neuronal markers (TUBB3 and MAP2) and dopaminergic neuron markers, including tyrosine hydroxylase (TH) in combination with FOXA2, while the glial marker Glial F.......

Discussion

Phenotypic profiling is a technique to measure a large number of phenotypes in cells by applying fluorescent stainings, microscopy, and image analysis3. Phenotypic profiles can be obtained and compared across cell lines or other experimental conditions to understand complex changes in cellular biology that might go unnoticed when using a single readout. Here we describe the application of phenotypic profiling to human iPSC-derived mDA neurons, a cell type frequently used to model PD cellular biolo.......

Disclosures

All authors are employed by Ksilink.

Acknowledgements

The authors would like to thank all colleagues at Ksilink for their valuable help and discussions that lead to the design of the presented protocol.

....

Materials

NameCompanyCatalog NumberComments
Anti- chicken – Alexa 647Jackson ImmunoRearch703-605-155Immunofluorescence
Anacondahttps://www.anaconda.com/download
Anti-Map2NovusNB300-213Immunofluorescence
Anti-mouse - Alexa 488Thermo FisherA11001Immunofluorescence
Anti-rabbit - Alexa 555Thermo FisherA21429Immunofluorescence
Anti-Tyrosine HydroxylaseMerckT2928Immunofluorescence
Anti-α-synucleinAbcam138501Immunofluorescence
Bravo Automated Liquid Handling Platform with 384ST headAgilentIf no liquid handler is available, the use of an electronic multichannel pipette is recommended.
Confocal microscope YokogawaCV7000The use of an automated confocal fluorescence microscope is recommended to ensure image quality consistency.
Countess Automated cell counterInvitrogenCell counting before seeding. Can also be done using a manual counting chamber.
DPBS +/+Gibco14040-133Buffer for washing
EL406 Washer Dispenser BioTek (Agilent) If no liquid handler is available, the use of an electronic multichannel pipette is recommended.
Formaldehyde Solution (PFA 16 %)EuromedexEM-15710-SFixation before staining
Hoechst 33342InvitrogenH3570Nuclear staining
iCell Base Medium 1FujifilmM1010Base medium for neurons
iCell DPN, Donor#01279, Phenotype AHN, lot#106339, 1MFujifilmC1087Apparently healthy donor
iCell DPN, Donor#11299, Phenotype LRRK2 G2019S, phenotype PD lot#106139FujifilmC1149Donor carrying LRRK2 G2019S mutation 
iCell Nervous System SupplementFujifilmM1031Supplement for base medium
iCell Neural Supplement BFujifilmM1029Supplement for base medium
Jupyter Python NotebookIn-house developmenthttps://github.com/Ksilink/Notebooks/tree/main/Neuro/DopaNeuronProfilingNotebook to perform phenotypic profile visualization and classification from raw data.
LamininBiolaminaLN521Plate coating
PFE-360MedChemExpressHY-120085LRRK2 kinase inhibitor
PhenoLinkIn-house developmenthttps://github.com/Ksilink/PhenoLinkSoftware for image analysis
PhenoPlate 384w, PDL coatedPerkin Elmer6057500Pre-coated plate for cell culture and imaging. This plate allows imaging of all wells using all objectives of the Yokogawa CV7000 microscope.
Storage plates Abgene 120 µLThermo ScientificAB-0781Necessary for compound dispensing using the Vprep pipetting system. If not available, the use of an electronic multichannel pipette is recommended.
TritonSigmaT9284Permeabilization before lysis
Trypan BlueSigmaT8154-20MLDetermination of living cells
Vprep Pipetting System AgilentMedium change and compound dispensing. Alternatively, an electronic multichannel pipette can be used.

References

  1. Panicker, N., Ge, P., Dawson, V. L., Dawson, T. M. The cell biology of Parkinson's disease. The Journal of Cell Biology. 220 (4), 202012095 (2021).
  2. Caicedo, J. C., et al. Data-analysis strategies for image-based cell profiling.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Phenotypic ProfilingHuman Stem Cell derived Midbrain Dopaminergic NeuronsParkinson s DiseaseIPSC derived NeuronsAutomated ImagingNeuron CharacterizationNeuronal PhenotypessynucleinTyrosine HydroxylaseMAP2

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved