A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol describes the analysis of multiclass pesticide residues in avocado varieties using the Quick-Easy-Cheap-Effective-Rugged-Safe (QuEChERS) method with ammonium formate, followed by gas chromatography-tandem mass spectrometry.
Gas chromatography (GC) tandem mass spectrometry (MS/MS) stands as a preeminent analytical instrument extensively employed for the surveillance of pesticide residues in food. Nevertheless, these methods are vulnerable to matrix effects (MEs), which can potentially affect accurate quantification depending on the specific combination of analyte and matrix. Among the various strategies to mitigate MEs, matrix-matched calibration represents the prevailing approach in pesticide residue applications due to its cost-effectiveness and straightforward implementation. In this study, a total of 45 representative pesticides were analyzed in three different varieties of avocado (i.e., Criollo, Hass, and Lorena) using the Quick-Easy-Cheap-Effective-Rugged-Safe (QuEChERS) method with ammonium formate and GC-MS/MS.
For this purpose, 5 g of the avocado sample was extracted with 10 mL of acetonitrile, and then 2.5 g of ammonium formate was added to induce phase separation. Subsequently, the supernatant underwent a cleanup process via dispersive solid-phase extraction employing 150 mg of anhydrous MgSO4, 50 mg of primary-secondary amine, 50 mg of octadecylsilane, 10 mg of graphitized carbon black, and 60 mg of a zirconium oxide-based sorbent (Z-Sep+). The GC-MS/MS analysis was successfully performed in less than 25 min. Rigorous validation experiments were carried out to assess the performance of the method. The examination of a matrix-matched calibration curve for each variety of avocado revealed that the ME remained relatively consistent and less than 20% (considered as a soft ME) for most pesticide/variety combinations. Furthermore, the method´s limits of quantification were lower than 5 µg/kg for all three varieties. Finally, the recovery values for most pesticides fell within the acceptable range of 70-120%, with relative standard deviation values below 20%.
In chemical analysis, the matrix effect (ME) can be defined in various ways, but a widely accepted general definition is as follows: it refers to the change in the signal, particularly a change in the slope of the calibration curve when the sample matrix or portion of it is present during the analysis of a specific analyte. As a critical aspect, ME necessitates thorough investigation during the validation process of any analytical method, as it directly affects the accuracy of quantitative measurement for the target analytes1. Ideally, a sample pretreatment procedure should be selective enough to avoid extracting any components from the sample ....
1. Preparation of the stock and working solutions
NOTE: For safety reasons, it is advisable to wear nitrile gloves, a laboratory coat, and safety glasses throughout the protocol.
Comprehensive validation of the analytical method was conducted according to SANTE/11312/2021 guidelines6, encompassing assessments of linearity, ME, recovery, and repeatability.
For the linearity assessment, matrix-matched calibration curves were constructed using spiked blank samples at multiple concentration levels (ranging from 5 to 600 µg/kg). The determination coefficients (R2) for most of the selected pesticides were found to be higher than or equ.......
The primary limitation associated with matrix-matched calibration arises from the use of blank samples as calibration standards. This leads to an augmented number of samples to be processed for analysis and an increased injection of matrix components in each analytical sequence, potentially leading to higher instrument maintenance demands. Nonetheless, this strategy is more suitable than standard addition, which would generate a much larger number of samples to be injected due to the need to perform a calibration curve f.......
We would like to thank EAN University and the University of La Laguna.
....Name | Company | Catalog Number | Comments |
3-Ethoxy-1,2-propanediol | Sigma Aldrich | 260428-1G | |
Acetonitrile | Merk | 1006652500 | |
Ammonium formate | Sigma Aldrich | 156264-1KG | |
AOAC 20i/s autosampler | Shimadzu | 221-723115-58 | |
Automatic shaker MX-T6-PRO | SCILOGEX | 8.23222E+11 | |
Balance | OHAUS | PA224 | |
Centrifuge tubes, 15 mL | Nest | 601002 | |
Centrifuge tubes, 2 mL | Eppendorf | 4610-1815 | |
Centrifuge tubes, 50 mL | Nest | 602002 | |
Centrifuge Z206A | MERMLE | 6019500118 | |
Choper 2L | Oster | 2114111 | |
Column SH-Rxi-5sil MS, 30 m x 0.25 mm, 0.25 µm | Shimadzu | 221-75954-30 | MS GC column |
Dispensette 5-50 mL | BRAND | 4600361 | |
DSC-18 | Sigma Aldrich | 52600-U | |
D-Sorbitol | Sigma Aldrich | 240850-5G | |
Ethyl acetate | Merk | 1313181212 | |
GCMS-TQ8040 | Shimadzu | 211552 | |
Graphitized carbon black | Sigma Aldrich | 57210-U | |
Injection syringe | Shimadzu | LC2213461800 | |
L-Gulonic acid γ-lactone | Sigma Aldrich | 310301-5G | |
Linner splitless | Shimadzu | 221-4887-02 | |
Magnesium sulfate anhydrus | Sigma Aldrich | M7506-2KG | |
Methanol | Panreac | 131091.12.12 | |
Milli-Q ultrapure (type 1) water | Millipore | F4H4783518 | |
Pipette tips 10 - 100 µL | Biologix | 200010 | |
Pipette tips 100 - 1000 µL | Brand | 541287 | |
Pipette tips 20 - 200 µL | Brand | 732028 | |
Pipettes Pasteur | NORMAX | 5426023 | |
Pippette Transferpette S variabel 10 - 100 µL | BRAND | 704774 | |
Pippette Transferpette S variabel 100 - 1000 µL | BRAND | 704780 | |
Pippette Transferpette S variabel 20 - 200 µL | SCILOGEX | 7.12111E+11 | |
Primary-secondary amine | Sigma Aldrich | 52738-U | |
Shikimic acid | Sigma Aldrich | S5375-1G | |
Syringe Filter PTFE/L 25 mm, 0.45 µm | NORMAX | FE2545I | |
Triphenyl phosphate (QC) | Sigma Aldrich | 241288-50G | |
Vials with fused-in insert | Sigma Aldrich | 29398-U | |
Z-SEP+ | Sigma Aldrich | 55299-U | zirconium oxide-based sorbent |
Pesticides | CAS registry number | ||
4,4´-DDD | Sigma Aldrich | 35486-250MG | 72-54-8 |
4,4´-DDE | Sigma Aldrich | 35487-100MG | 72-55-9 |
4,4´-DDT | Sigma Aldrich | 31041-100MG | 50-29-3 |
Alachlor | Sigma Aldrich | 45316-250MG | 15972-60-8 |
Aldrin | Sigma Aldrich | 36666-25MG | 309-00-2 |
Atrazine | Sigma Aldrich | 45330-250MG-R | 1912-24-9 |
Atrazine-d5 (IS) | Sigma Aldrich | 34053-10MG-R | 163165-75-1 |
Buprofezin | Sigma Aldrich | 37886-100MG | 69327-76-0 |
Carbofuran | Sigma Aldrich | 32056-250-MG | 1563-66-2 |
Chlorpropham | Sigma Aldrich | 45393-250MG | 101-21-3 |
Chlorpyrifos | Sigma Aldrich | 45395-100MG | 2921-88-2 |
Chlorpyrifos-methyl | Sigma Aldrich | 45396-250MG | 5598-13-0 |
Deltamethrin | Sigma Aldrich | 45423-250MG | 52918-63-5 |
Dichloran | Sigma Aldrich | 45435-250MG | 99-30-9 |
Dichlorvos | Sigma Aldrich | 45441-250MG | 62-73-7 |
Dieldrin | Sigma Aldrich | 33491-100MG-R | 60-57-1 |
Diphenylamine | Sigma Aldrich | 45456-250MG | 122-39--4 |
Endosulfan A | Sigma Aldrich | 32015-250MG | 115-29-7 |
Endrin | Sigma Aldrich | 32014-250MG | 72-20-8 |
EPN | Sigma Aldrich | 36503-100MG | 2104-64-5 |
Esfenvalerate | Sigma Aldrich | 46277-100MG | 66230-04-4 |
Ethion | Sigma Aldrich | 45477-250MG | 563-12-2 |
Fenamiphos | Sigma Aldrich | 45483-250MG | 22224-92-6 |
Fenitrothion | Sigma Aldrich | 45487-250MG | 122-14-5 |
Fenthion | Sigma Aldrich | 36552-250MG | 55-38-9 |
Fenvalerate | Sigma Aldrich | 45495-250MG | 51630-58-1 |
HCB | Sigma Aldrich | 45522-250MG | 118-74-1 |
Iprodione | Sigma Aldrich | 36132-100MG | 36734-19-7 |
Lindane | Sigma Aldrich | 45548-250MG | 58-89-9 |
Malathion | Sigma Aldrich | 36143-100MG | 121-75-5 |
Metalaxyl | Sigma Aldrich | 32012-100MG | 57837-19-1 |
Methidathion | Sigma Aldrich | 36158-100MG | 950-37-8 |
Myclobutanil | Sigma Aldrich | 34360-100MG | 88671-89-0 |
Oxyfluorfen | Sigma Aldrich | 35031-100MG | 42874-03-3 |
Parathion-methyl | Sigma Aldrich | 36187-100MG | 298-00-0 |
Penconazol | Sigma Aldrich | 36189-100MG | 66246-88-6 |
Pirimiphos-methyl | Sigma Aldrich | 32058-250MG | 29232-93-7 |
Propiconazole | Sigma Aldrich | 45642-250MG | 60207-90-1 |
Propoxur | Sigma Aldrich | 45644-250MG | 114-26-1 |
Propyzamide | Sigma Aldrich | 45645-250MG | 23850-58-5 |
Pyriproxifen | Sigma Aldrich | 34174-100MG | 95737-68-1 |
Tolclofos-methyl | Sigma Aldrich | 31209-250MG | 5701804-9 |
Triadimefon | Sigma Aldrich | 45693-250MG | 43121-43-3 |
Triflumizole | Sigma Aldrich | 32611-100MG | 68694-11-1 |
α-HCH | Sigma Aldrich | 33377-50MG | 319-86-8 |
β-HCH | Sigma Aldrich | 33376-100MG | 319-85-7 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved