A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a reliable method for obtaining high-quality cryosections of whole rabbit eyes. It details rabbit eye dissection, fixation, embedding, and sectioning procedures, which may be easily adapted for use in any study utilizing immunohistochemistry in larger eyes.
This protocol describes how to obtain high-quality retinal cryosections in larger animals, such as rabbits. After enucleation, the eye is briefly immersed in the fixative. Then, the cornea and iris are removed and the eye is left overnight for additional fixation at 4 °C. Following fixation, the lens is removed. The eye is then placed in a cryomold and filled with an embedding medium. By removing the lens, the embedding medium has better access to the vitreous and leads to better retinal stability. Importantly, the eye should be incubated in embedding medium overnight to allow complete infiltration throughout the vitreous. Following overnight incubation, the eye is frozen on dry ice and sectioned. Whole retinal sections may be obtained for use in immunohistochemistry. Standard staining protocols may be utilized to study the localization of antigens within the retinal tissue. Adherence to this protocol results in high-quality retinal cryosections that may be used in any experiment utilizing immunohistochemistry.
The retina is composed of several layers of specialized cells within the eye that together work to convert light into neural signals. Because the retina plays a critical role in vision, understanding its structure and function can provide valuable insights into some of the most common causes of vision loss such as macular degeneration and diabetic retinopathy, among others.
Rabbits serve as a convenient animal model in retinal research as they offer several advantages compared to other models. Rabbit eyes are relatively similar in anatomy to human eyes1,2. For example, rabbits have ....
All procedures were carried out in compliance with and approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Southern California. Fourteen (n = 14) Dutch-belted rabbits between 4 and 6 months of age were used in the development of this protocol. Both male and female animals were used. All animals weighed between 2.0 and 2.5 kg. All animals were singly housed. A list of recommended materials and equipment can be found in the Table of Materials.
After tissue processing, a standard immunofluorescence protocol may be utilized to investigate any number of biological processes within the retina. Figure 3A-C illustrate representative fluorescence images of a retinal section obtained via confocal microscopy. The retinal section was immunostained according to a previously described protocol12.
The representative retinal sections shown in
Prior to implementing the above protocol, we consistently faced difficulties with the tissue processing of rabbit eyes for IHC. We had adapted several protocols from the eyes of smaller animals such as mice but found these to lead to inadequate fixation and difficulty with tissue sectioning. There are several important considerations that allow for consistent, high-quality sections of the rabbit retina.
One consideration is the large size of the rabbit globe in comparison to other commonly use.......
Thanks to Rosanna Calderon, Dominic Shayler, and Rosa Sierra for technical advice. This study was supported in part by an unrestricted grant to the Department of Ophthalmology at the USC Keck School of Medicine from Research to Prevent Blindness (AN), NIH K08EY030924 (AN), the Las Madrinas Endowment in Experimental Therapeutics for Ophthalmology (AN), a Research to Prevent Blindness Career Development Award (AN), Knights Templar Eye Foundation Endowment (AN), and the Edward N. and Della L. Thome Memorial Foundation (AN, KG).
....Name | Company | Catalog Number | Comments |
100 mm culture dish | Corning | 353025 | Used for dissection (steps 1.3, 3, and 5) |
50 mL tube | Genesee Scientific | 28-106 | For fixation and cryoprotection (step 1) |
Cryostat | Leica | CM1850 | For cryosectioning (step 7) |
Curved scissors | Fine Science Tools | 91500-09 | Used for dissection (steps 1.3, 3, and 5) |
DAPI | Fisher Scientific | D3571 | Diluted 1:1,000 in blocking buffer |
Dissection microscope | Zeiss | Stemi 2000-C | Used for dissection (steps 1.3, 3, and 5) |
Donkey anti-Goat 488 | Fisher Scientific | A-11055 | Diluted 1:1,000 in blocking buffer |
Donkey anti-Mouse 555 | Fisher Scientific | A-31570 | Diluted 1:1,000 in blocking buffer |
Forceps | Fine Science Tools | 91150-20 | Used for dissection (steps 1.3, 3, and 5) |
Glass Slide Cover | VWR | 48404-453 | For cryosectioning (step 7) |
Goat anti-SOX2 | R&D Systems | AF2018 | Diluted 1:100 in blocking buffer |
High-profile disposable cryostat blades | Leica Microsystems Inc. | 14035838926 | For cryosectioning (step 7) |
Kimwipe | Fisher Scientific | 06-666-A | Used to wipe away excess PBS or OCT (steps 3 and 6) |
Mouse anti-RPE65 | Novus Bio | NB100-355SS | Diluted 1:100 in blocking buffer |
OmniPur Sucrose | Millipore | 167117 | Used for cryoprotectant (step 1.2) |
Paraformaldehyde 20% solution | Electron Microscopy Sciences | 15713 | Used as tissue fixative (diluted to 4% in step 1.1) |
Peel-A-Away Disposable Embedding Mold (22x22x20 mm Deep) | Polysciences, Inc. | 18646A | Used as embedding mold (step 6) |
Phosphate buffered saline, 1x | Corning | 21-030-CV | Used in preparation of fixative (step 1.1) and cryoprotectant (step 1.2) |
Scalpel blade no. 15 | Feather | 08-916-5D | Used for dissection (steps 1.3, 3, and 5) |
Superfrost Plus Microscope Slides | Fisher Scientific | 12-550-15 | For cryosectioning (step 7) |
Tissue-Tek O.C.T. Compound | Sakura | 4583 | Used as embedding media (step 6) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved