A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe novel, simple methodologies of synthesis and characterization of biocompatible lignin micro- and submicron particles. These formulations provide a facile approach for the utilization of the heteropolymer, as well as an alternative for the rational design of multifunctional carrier matrices with potential applicability in biomedicine, pharmaceutical technology, and the food industry.
The applicability of biopolymer micro-/nano- technology in human, veterinary medicine, pharmaceutical, and food technology is rapidly growing due to the great potential of biopolymer-based particles as effective carrier systems. The use of lignin as a basic heteropolymer biomatrix for the design of innovative micro-/submicron formulations allows the achievement of increased biocompatibility and offers various active functional groups presenting opportunities for customization of the physicochemical properties and bioactivities of the formulations for diverse applications. The aim of the present study was to develop a simple and ecofriendly methodology for the synthesis of lignin particles with micro- and submicron size; to evaluate their physicochemical, spectral, and structural characteristics; and to examine their capacity for encapsulation of biologically active molecules and potential for in vitro release of bioflavonoids in simulated gastrointestinal media. The presented methodologies apply cheap and green solvents; easy, straightforward, quick, and sensitive processes requiring little equipment, non-toxic substances, and simple methods for their characterization, the determination of encapsulation capacity towards the poorly water-soluble bioactive compounds morin and quercetin, and the in vitro release potential of the lignin matrices.
Nowadays inclination towards biopolymers such as cellulose, chitosan, collagen, dextran, gelatin, and lignin as precursors for the design of micro-/submicron carriers with customizable size, physicochemical properties, and biofunctionalities has increased in the biomedical, pharmaceutical, and food technology industries due to their applicability in tissue engineering, 3D bioprinting, in vitro disease modeling platforms, packaging industry, emulsion preparation, and nutrient delivery among others1,2,3.
Novel studies highlight the aspects of lignin-based hydrogels as well as micro- and nano- formulations4 as advantageous vehicles used for food packaging materials5, energy storage6, cosmetics7, thermal/light stabilizers, reinforced materials, and drug-carrier matrices8 for the delivery of hydrophobic molecules, improvement of UV barriers9, as reinforcing agents in nanocomposites, and as an alternative to inorganic nanoparticles due to some recent safety issues10,11,12. The reason behind this tendency is the biocompatibility, biodegradability, and non-toxicity of the natural hetero biopolymer, as well as its proven bioactivities of lignin-antioxidant potential and radical scavenging, anti-proliferative, and antimicrobial activities13,14,15,16,17.
Scientific literature reports various methods for synthesis (self-assembly, anti-solvent precipitation, acid precipitation, and solvent shifting)18 and characterization of lignin-based micro-/nano- scaled formulations, including the application of expensive or harmful solvents such as tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and acetone, and complicated, indirect, and tedious processes that use a lot of equipment and toxic substances12,19,20.
To overcome the latter disadvantages, the following protocols present novel methodologies for the synthesis of lignin-based micro-/submicron particles using cheap and green solvents; easy, straightforward, quick, and sensitive processes requiring little equipment, non-toxic substances, and simple methods for their characterization and the determination of encapsulation capacity towards poorly water-soluble bioactive compounds and in vitro release potential of the lignin matrices. The presented lab-scale production methods are advantageous for the manufacture of functional lignin carriers with tunable sizes, high encapsulation capacity, and sustainable in vitro release behavior utilizing simple characterization procedures and eco-friendly chemicals that can find application in various areas of biomedical sciences and food technology. Two flavonoids were applied as target molecules encapsulated into the lignin particles: morin-into the microparticles, and quercetin-into the submicron particles. The difference in the structures of both flavonoids Is only the position of the second -OH group in the B-aromatic ring: the -OH group is on the 2' position in morin and on the 3' position in quercetin, thus both organic compounds are positional isomers. The latter fact presumes similar behavior of both bioactive natural compounds in the processes of encapsulation and/or release.
1. Synthesis of lignin microparticles
2. Synthesis of lignin submicron particles
3. Synthesis of natural flavonoid-encapsulated lignin micro-/submicron particles
4. Determination of the encapsulation efficiency of lignin micro-/sumicro- particles
5. Characterization of lignin micro- and submicron particles
6. Determination of the in vitro release capacity of lignin particles
7. Statistical analyses
An anti-solvent precipitation technique was executed to produce alkali lignin micro-/submicron particles. An aqueous solution of diluted inorganic acid-nitric acid/organic acid-citric acid was dispersed into an alkali lignin aqueous solution, enriched with an eco-friendly surfactant/ethanol, which resulted in the gradual precipitation of the biopolymer solute and, after sonication, a suspension of compact micro-/submicron particles was finally produced (Figure 1).
Among the main critical issues of modern synthesis methodologies for the design of drug-carrier formulations based on biopolymers is the application of hazardous organic reagents - volatile and flammable solvents, such as tetrahydrofuran, acetone, methanol, and even DMSO in high concentrations - which limits their applicability in biomedicine, pharmaceutical industry, and food technology due to the manifestation of possible toxic effects20,21,
The authors have no conflicts of interest to disclose.
This study was supported by the Bulgarian Scientific Fund under Contract № KΠ-06 H59/3 and by Scientific Project No. 07/2023 FVM, Trakia University.
Name | Company | Catalog Number | Comments |
automatic-cell counter | EVE, NanoEnTek | ||
Citric acid | Sigma | 251275 | ACS reagent, ≥99.5% |
digital water bath | Memmert | ||
Eppendorf tubes, 1.5-2 mL | |||
Ethanol | Sigma | 34852-M | absolute, suitable for HPLC, ≥99.8% |
Folin–Ciocalteu’s phenol reagent | Sigma | F9252 | |
freeze dryer | Biobase | ||
gallic acid | Sigma- | BCBW7577 | monohydrate |
HCl | Sigma | 258148 | ACS reagent, 37% |
HNO3 | Sigma | 438073 | ACS reagent, 70% |
lignin, alkali | Sigma | 370959 | |
morin | Sigma | PHL82601 | |
NaCl | Sigma | S9888 | ACS reagent, ≥99.0% |
Na2CO3 | Sigma | 223530 | powder, ≥99.5%, ACS reagent |
NaOH | Sigma | 655104 | reagent grade, 97%, powder |
orbital shaker | IKA | KS 130 basic | |
pH-meter | Consort | ||
phosphate-buffered saline (PBS) | Sigma | RNBH7571 | |
Quercetin hydrate | Sigma | STBG3815V | |
statistical software for Excel | Microsoft Corporation | XLSTAT Version 2022.4.5. | |
Tween 80 | Sigma | P8074 | BioXtra, viscous liquid |
ultracentrifuge | Hermle | Z 326 K | |
Ultrapure water system | Adrona | INTEGRITY+ | |
ultrasound homogenizer | Bandelin Sonopuls | HD 2070 | |
UV/Vis spectrophotometer | Hach-Lange | DR 5000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved