Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Destek katmanlarının kriyojenik elektron mikroskobu (cryoEM) ızgaralarına uygulanması, parçacık yoğunluğunu artırabilir, hava-su arayüzü ile etkileşimleri sınırlayabilir, ışın kaynaklı hareketi azaltabilir ve parçacık yönelimlerinin dağılımını iyileştirebilir. Bu belge, gelişmiş kriyo numunesi hazırlama için cryoEM ızgaralarını tek katmanlı bir grafen ile kaplamak için sağlam bir protokolü açıklamaktadır.
Kriyojenik elektron mikroskobunda (cryoEM), saflaştırılmış makromoleküller delikli bir karbon folyo taşıyan bir ızgaraya uygulanır; Moleküller daha sonra fazla sıvıyı uzaklaştırmak için lekelenir ve kabaca 1 μm genişliğinde folyo delikleri boyunca asılı duran kabaca 20-100 nm kalınlığında bir camsı buz tabakasında hızla dondurulur. Elde edilen numune, kriyojenik transmisyon elektron mikroskobu kullanılarak görüntülenir ve uygun yazılım kullanılarak görüntü işlendikten sonra, atomik çözünürlüğe yakın yapılar belirlenebilir. cryoEM'nin yaygın olarak benimsenmesine rağmen, numune hazırlama, cryoEM iş akışlarında ciddi bir darboğaz olmaya devam ediyor ve kullanıcılar genellikle asılı camsı buzda kötü davranan numunelerle ilgili zorluklarla karşılaşıyor. Son zamanlarda, cryoEM ızgaralarını, görüntülenen alandaki parçacık yoğunluğunu sıklıkla artıran ve parçacıklar ile hava-su arayüzü arasındaki etkileşimleri azaltabilen bir destek yüzeyi görevi gören tek bir sürekli grafen tabakası ile değiştirmek için yöntemler geliştirilmiştir. Burada, grafenin cryoEM ızgaralarına uygulanması ve ortaya çıkan ızgaraların bağıl hidrofilikliğinin hızlı bir şekilde değerlendirilmesi için ayrıntılı protokoller sunuyoruz. Ek olarak, karakteristik kırınım modelini görselleştirerek grafenin varlığını doğrulamak için EM tabanlı bir yöntem açıklıyoruz. Son olarak, nispeten düşük bir konsantrasyonda saf bir numune kullanarak bir Cas9 kompleksinin 2.7 şçözünürlüklü yoğunluk haritasını hızlı bir şekilde yeniden yapılandırarak bu grafen desteklerinin faydasını gösteriyoruz.
Tek parçacıklı kriyojenik elektron mikroskobu (cryoEM), biyolojik makromolekülleri görselleştirmek için yaygın olarak kullanılan bir yönteme dönüşmüştür1. Doğrudan elektron algılama 2,3,4, veri toplama5 ve görüntü işleme algoritmaları6,7,8,9,10'daki gelişmelerle beslenen cryoEM, artık hızla artan sayıda makromolekülün atomik çözünürlüğe yakın 3D yapılarını üretebilmek....
1. CVD grafenin hazırlanması
Burada özetlenen ekipman (Şekil 1) ve protokol (Şekil 2) kullanılarak grafen kaplı kriyoEM ızgaralarının başarılı bir şekilde üretilmesi, karakteristik kırınım modeli ile doğrulanabilen folyo deliklerini kaplayan tek bir grafen tabakası ile sonuçlanacaktır. Grafen yüzeyine protein adsorpsiyonunu teşvik etmek için, oksijen içeren fonksiyonel gruplar kurarak yüzeyi hidrofilik hale getirmek için UV/ozon işlemi kullanılabilir. Bununla bir.......
CryoEM numune hazırlama, çoğu iş akışının, araştırmacıların kırılgan ızgaralara zarar vermemek için son derece dikkatli bir şekilde manuel olarak manipüle etmelerini gerektiren bir dizi teknik zorluk içerir. Ek olarak, herhangi bir numunenin vitrifikasyona uygunluğu tahmin edilemez; Parçacıklar genellikle hava-su-arayüzü veya ızgaraları kaplayan katı destek folyosu ile etkileşime girer, bu da parçacıkların tercih edilen yönelimleri benimsemesine veya çok yüksek protein konsantrasyonları.......
Yazarların ifşa edecek herhangi bir ihtilafı yoktur.
Örnekler, Arnold ve Mabel Beckman Vakfı sayesinde elde edilen mikroskoplarda MIT.nano'daki CryoEM Tesisinde hazırlandı ve görüntülendi. Temas açılı görüntüleme cihazları MIT Metropolis Maker Space'de basıldı. Nieng Yan ve Yimo Han'ın laboratuvarlarına ve MIT.nano personeline bu yöntemin benimsenmesi sürecindeki destekleri için teşekkür ederiz. Özellikle, anlayışlı tartışmaları ve geri bildirimleri için Dr. Guanhui Gao ve Sarah Sterling'e teşekkürlerimizi sunuyoruz. Bu çalışma, NIH hibeleri R01-GM144542, 5T32-GM007287 ve NSF-CAREER hibe 2046778 tarafından desteklenmiştir. Davis laboratuvarındaki araştırmalar Alfred P. Sloan Vakfı, James H. Ferry Fonu, MIT J-Clinic ve W....
Name | Company | Catalog Number | Comments |
250 mL beaker (3x) | Fisher | 02-555-25B | |
50 mL beaker (2x) | Corning | 1000-50 | |
Acetone | Fisher | A949-4 | |
Aluminum foil | Fisher | 15-078-292 | |
Ammonium persulfate | Fisher | (I17874 | |
Coverslips 50 mm x 24 mm | Mattek | PCS-1.5-5024 | |
CVD graphene | Graphene Supermarket | CVD-Cu-2x2 | |
easiGlow discharger | Ted-Pella | 91000S | |
Ethanol | Millipore-Sigma | 1.11727 | |
Flat-tip tweezers | Fisher | 50-239-60 | |
Glass cutter | Grainger | 21UE26 | |
Glass petri plate and cover | VWR | 75845-544 | |
Glass serological pipette | Fisher | 13-676-34D | |
Grid Storage Case | EMS | 71146-02 | |
Hot plate | Fisher | 07-770-108 | |
Isopropanol | Sigma | W292907 | |
Kimwipe | Fisher | 06-666 | |
Lab scissors | Fisher | 13-806-2 | |
Methyl-Methacrylate EL-6 | Kayaku | MMA M310006 0500L1GL | |
Molecular grade water | Corning | 46-000-CM | |
Negative action tweezers (2x) | Fisher | 50-242-78 | |
P20 pipette | Rainin | 17014392 | |
P200 pipette | Rainin | 17008652 | |
Parafilm | Fisher | 13-374-12 | |
Pipette tips | Rainin | 30389291 | |
Quantifoil grids with holey carbon | EMS | Q2100CR1 | |
Spin coater | SetCas | KW-4A | with chuck SCA-19-23 |
Straightedge | ULINE | H-6560 | |
Thermometer | Grainger | 3LRD1 | |
UV/Ozone cleaner | BioForce | SKU: PC440 | |
Vacuum desiccator | Thomas Scientific | 1159X11 | |
Whatman paper | VWR | 28297-216 |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır