Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Die Anwendung von Trägerschichten auf kryogene Elektronenmikroskopie-Gitter (KryoEM) kann die Partikeldichte erhöhen, Wechselwirkungen mit der Luft-Wasser-Grenzfläche begrenzen, strahlinduzierte Bewegungen reduzieren und die Verteilung der Partikelorientierungen verbessern. In diesem Artikel wird ein robustes Protokoll für die Beschichtung von KryoEM-Gittern mit einer Monoschicht aus Graphen beschrieben, um die Vorbereitung von Kryoproben zu verbessern.

Zusammenfassung

Bei der kryogenen Elektronenmikroskopie (KryoEM) werden gereinigte Makromoleküle auf ein Gitter aufgebracht, das eine löchrige Kohlenstofffolie trägt. Die Moleküle werden dann getupft, um überschüssige Flüssigkeit zu entfernen, und schnell in einer etwa 20-100 nm dicken Schicht aus glasartigem Eis eingefroren, die über etwa 1 μm breite Folienlöcher schwebt. Die resultierende Probe wird mittels kryogener Transmissionselektronenmikroskopie abgebildet und nach der Bildverarbeitung mit geeigneter Software können nahezu atomar aufgelöste Strukturen bestimmt werden. Trotz der weit verbreiteten Akzeptanz der KryoEM bleibt die Probenvorbereitung ein schwerwiegender Engpass in den Arbeitsabläufen der KryoEM, wobei die Anwender oft auf Herausforderungen stoßen, die mit dem schlechten Verhalten von Proben im schwebenden Glaseis zusammenhängen. In jüngster Zeit wurden Methoden entwickelt, um KryoEM-Gitter mit einer einzigen kontinuierlichen Schicht aus Graphen zu modifizieren, die als Stützfläche fungiert, die oft die Partikeldichte im abgebildeten Bereich erhöht und Wechselwirkungen zwischen Partikeln und der Luft-Wasser-Grenzfläche reduzieren kann. Hier stellen wir detaillierte Protokolle für die Anwendung von Graphen auf KryoEM-Gitter und für die schnelle Bewertung der relativen Hydrophilie der resultierenden Gitter zur Verfügung. Darüber hinaus beschreiben wir eine EM-basierte Methode, um das Vorhandensein von Graphen zu bestätigen, indem wir sein charakteristisches Beugungsmuster visualisieren. Schließlich demonstrieren wir den Nutzen dieser Graphenträger, indem wir eine Dichtekarte mit einer Auflösung von 2,7 Å eines Cas9-Komplexes unter Verwendung einer reinen Probe in relativ niedriger Konzentration schnell rekonstruieren.

Einleitung

Die kryogene Einzelpartikel-Elektronenmikroskopie (KryoEM) hat sich zu einer weit verbreiteten Methode zur Visualisierung biologischer Makromoleküle entwickelt1. Angetrieben von Fortschritten bei der direkten Elektronendetektion 2,3,4, der Datenerfassung5 und den Bildverarbeitungsalgorithmen 6,7,8,9,10 ist die KryoEM nun in der Lage, 3D-Strukturen mit nahezu atomarer Auflösung einer schnell ....

Protokoll

1. Herstellung von CVD-Graphen

  1. Bereiten Sie die Graphenätzlösung wie unten beschrieben vor.
    1. 4,6 g Ammoniumpersulfat (APS) in 20 ml Wasser in molekularer Qualität in einem 50-ml-Becherglas für eine 1-m-Lösung auflösen und mit Aluminiumfolie abdecken. Lassen Sie APS vollständig auflösen, während Sie mit Schritt 1.2 fortfahren.
  2. Bereiten Sie einen Abschnitt CVD-Graphen für die Methylmethacrylat-Beschichtung (MMA) vor. Schneiden Sie vorsichtig einen quadratischen Abschnitt CVD-Graphen ab. Übertragen Sie das Quadrat in ein Deckglas (50 mm x 24 mm) in einer sauberen Petrischale und decken Sie es während des Transports z....

Repräsentative Ergebnisse

Die erfolgreiche Herstellung von graphenbeschichteten KryoEM-Gittern unter Verwendung der hier beschriebenen Ausrüstung (Abbildung 1) und des Protokolls (Abbildung 2) führt zu einer Monoschicht aus Graphen, die die Folienlöcher bedeckt, was durch ihr charakteristisches Beugungsmuster bestätigt werden kann. Um die Proteinadsorption an die Graphenoberfläche zu fördern, kann die Oberfläche durch UV/Ozon-Behandlung hydrophil gemacht werden, indem sauerstoffha.......

Diskussion

Die CryoEM-Probenvorbereitung bringt eine Vielzahl technischer Herausforderungen mit sich, wobei die meisten Arbeitsabläufe erfordern, dass Forscher zerbrechliche Gitter manuell mit äußerster Sorgfalt manipulieren, um sie nicht zu beschädigen. Darüber hinaus ist die Zugänglichkeit einer Probe für die Vitrifikation unvorhersehbar; Partikel interagieren häufig mit der Luft-Wasser-Grenzfläche oder mit der festen Trägerfolie, die die Gitter überlagert, was dazu führen kann, dass Partikel bevorzugte Orientierungen.......

Offenlegungen

Die Autoren haben keine Konflikte offenzulegen.

Danksagungen

Die Proben wurden in der CryoEM Facility in MIT.nano mit Mikroskopen präpariert und abgebildet, die dank der Arnold and Mabel Beckman Foundation erworben wurden. Kontaktwinkel-Bildgebungsgeräte wurden im MIT Metropolis Maker Space gedruckt. Wir danken den Laboren von Nieng Yan und Yimo Han sowie den Mitarbeitern von MIT.nano für ihre Unterstützung bei der Einführung dieser Methode. Insbesondere danken wir Dr. Guanhui Gao und Dr. Sarah Sterling für ihre aufschlussreichen Diskussionen und ihr Feedback. Diese Arbeit wurde durch die NIH-Zuschüsse R01-GM144542, 5T32-GM007287 und NSF-CAREER-Zuschüsse 2046778 unterstützt. Die Forschung im Davis-Labor wird von der Alfred P. S....

Materialien

NameCompanyCatalog NumberComments
250 mL beaker (3x)Fisher02-555-25B
50 mL beaker (2x)Corning1000-50
AcetoneFisherA949-4
Aluminum foilFisher15-078-292
Ammonium persulfateFisher(I17874
Coverslips 50 mm x 24 mmMattekPCS-1.5-5024
CVD grapheneGraphene SupermarketCVD-Cu-2x2
easiGlow dischargerTed-Pella91000S
EthanolMillipore-Sigma1.11727
Flat-tip tweezers Fisher50-239-60
Glass cutterGrainger21UE26
Glass petri plate and cover VWR75845-544
Glass serological pipetteFisher13-676-34D
Grid Storage CaseEMS71146-02
Hot plateFisher07-770-108
IsopropanolSigmaW292907
KimwipeFisher06-666
Lab scissors Fisher13-806-2
Methyl-Methacrylate EL-6 KayakuMMA M310006 0500L1GL
Molecular grade waterCorning46-000-CM
Negative action tweezers (2x)Fisher50-242-78
P20 pipetteRainin17014392
P200 pipetteRainin17008652 
ParafilmFisher13-374-12
Pipette tipsRainin30389291
Quantifoil grids with holey carbon EMSQ2100CR1
Spin coater SetCasKW-4Awith chuck SCA-19-23
StraightedgeULINEH-6560
Thermometer Grainger3LRD1
UV/Ozone cleaner BioForceSKU: PC440
Vacuum desiccatorThomas Scientific1159X11
Whatman paperVWR28297-216

Referenzen

  1. Chua, E. Y. D., et al. cheaper: Recent advances in cryo-electron microscopy. Annu Rev Biochem. 91, 1-32 (2022).
  2. Bai, X. C., Fernandez, I. S., McMullan, G., Scheres, S. H. Ribosome structures to near-atomic resolutio....

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

BiochemieHeft 201

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten