Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol presents a practical guide on the surgery for creation of aortic regurgitation (AR) in the mouse. Assessment of the AR mouse by echocardiography and invasive hemodynamic measurement recapitulates its clinically relevant characteristics of volume overload-induced eccentric hypertrophy, suggesting its promising application in the study of cardiac hypertrophy.

Abstract

Aortic regurgitation (AR) is a common valvular heart disease that exerts volume overload on the heart and represents a global public health problem. Although mice are widely applied to shed light on the mechanisms of cardiovascular disease, mouse models of AR, especially those induced by surgery, are still paucity. Here, a mouse model of AR was described in detail which is surgically induced by disruption of the aortic valves under high-resolution echocardiography. In accordance with regurgitated blood flow, AR mouse hearts present a distinctive and clinically relevant volume overload phenotype, which is characterized by eccentric hypertrophy and cardiac dysfunction, as evidenced by echocardiographic and invasive hemodynamic evaluation. Our proposal, in a reliable and reproducible manner, provides a practical guide on the establishment and assessment of a mouse model of AR for future studies on molecular mechanisms and therapeutic targets of volume overload cardiomyopathy.

Introduction

In the presence of increased volume overload (preload) or pressure overload (afterload), the heart undergoes enlargement, a condition termed hypertrophy. Although cardiac hypertrophy is a compensatory response to maintain perfusion of peripheral organs before cardiac failure, it is also an independent risk factor for major cardiovascular events1,2. Volume overload is one of the important manifestations of increased mechanical stress. Volume overload occurs during cardiac diastole and induces eccentric cardiac hypertrophy, which is not only commonly seen in valvular diseases, such as aortic regurgitation and mi....

Protocol

This protocol has received ethical approval from the Animal Care and Use Committee of Zhongshan Hospital, Fudan University, and follows the recommendations of Guide for the Care and Use of Laboratory Animals (No. 85-23, revised 2011; National Institutes of Health, Bethesda, MD, USA).

NOTE: Animal experiments were performed on male C57BL/6J mice >10 weeks of age. The surgeon in this protocol should be skillful in the manipulation of murine echocardiography, before he/she performs the AR ope.......

Representative Results

To guarantee successful AR, we validated regurgitant blood flow using color Doppler and pulse wave Doppler echocardiography. In mice with AR, the color Doppler spectrum of the aortic arch showed regurgitant flow (red) immediately post-operation, which was absent in sham mice (no flow in diastole; Figure 3A). Consistently, the pulse wave Doppler demonstrated robustly elevated regurgitant flow in AR mice (Figure 3B,C). With a further confirmation .......

Discussion

The surgical induction of AR in the mouse is a technically challenging, new technique but has significant translational relevance. To master the technique, a surgeon should at least be familiar in advance with murine cervical and cardiac anatomy, mouse handling, and echocardiography. Skillful operation in invasive hemodynamic measurement is a plus. For successful AR operation, special care should be taken on several critical steps.

Cutting open the RCCA is the most crucial step. The hole on th.......

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81941002, 82170389, 82170255, 81730009, 81670228, and 81500191), Laboratory Animal Science Foundation of Science and Technology Commission of Shanghai Municipality (201409004300 and 21140904400), Health Science and Technology Project of Shanghai Pudong New Area Health Commission (PW2019A-13), and "Rising Sun" Excellent Young Medical Talents Program of Shanghai East Hospital (2019xrrcjh03).

....

Materials

NameCompanyCatalog NumberComments
Copper plateJD.com Inc.Customized20 X 15 cm or bigger is prefeered
Curved Tying forceps66 Vision Tech53324Ato stretch and isolate muscle, tissue, and vessel
Heating padJD.com Inc.Changzhi 55warm the copper plate and mouse by the way
Long-handed Curved Tying ForcepsMECHENICTS-15to stretch vessel
Metal Wire (stainless steel)JD.com Inc.0.18 mm in diametterwork with a plastic catheter to puncture aortic valves
Needle HolderShanghai Jinzhong131110suture of skin
Plastic CatheterAnilab software & instrumentsPE-0402work with a metal wire to puncture aortic valves
Pressure CatheterMillar InstrumentsSPR 8351.4F in size
Pressure Data Acquisition Device and Analog/Digital ConverterAD InstrumentsLabchart 5connected with pressure catherter
ScissorSuzhou ShiqiangStronger 13Crto cut skin
Smallpinch ScissorsShanghai JinzhongYBE030to cut vessel
StereomicroscopeOlympus CorporationSMZ845for incision and intubation of vessel  
Straight Tying forceps66 Vision Tech53320Ato stretch and isolate muscle, tissue, and vessel
ThumbforcepsSuzhou Shiqiang5307Bto clamp and stretch skin and muscle
Ultrasound GelPARKERAquasonic-100to transfer ultrasound signal
Ultrasound Imaging SystemVisualSonics2100includes B-mode, M-model, color Doppler and pulse wave Dopper
VaporizerRWD Life ScienceR540for anesthesia

References

  1. You, J., et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. American Journal of Physiology. Heart and Circulatory Physiology. 314 (3), 552-562 (2018).
  2. Wu, J., et al.

Explore More Articles

Aortic RegurgitationCardiac Volume OverloadMouse ModelSurgical InductionEchocardiographyCardiac HypertrophyCardiac Dysfunction

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved