This video demonstrates the technique of anterior cervical discectomy and fusion in the ovine model.
Undecalcified bone histology provides important information for a variety of clinical and research applications. It is technically challenging, particularly with large size specimens. This video illustrates the process of producing good quality sections and demonstrates the technical difficulties and methods with which to overcome them.
Genetic crosses of rodent malaria parasites are performed by feeding two genetically distinct parasites to mosquitoes. Recombinant progeny are cloned from mouse blood after allowing mosquitoes to bite infected mice. This video shows how to produce genetic crosses of Plasmodium yoelii and is applicable to other rodent malaria parasites.
A robust approach to monitor the delivery of organelles to the acidic lumen of the yeast vacuole for degradation and recycling is described. The method relies on the specific labeling of target organelles with a genetically encoded dual-emission fluorescence pH-biosensor, and visualization of individual cells using fluorescence microscopy.
This is a method to visualise leukocyte adhesion to the endothelium in harvested pressurised vessels. The technique enables studying vascular adhesion under shear flow with differing intraluminal pressures up to 200 mmHg thus mimic-ing the pathophysiological conditions of high blood pressure.
Anodic arc discharge is one of the most practical and efficient methods to synthesize various carbon nanostructures. To increase the arc controllability and flexibility, a non-uniform magnetic field was introduced to process the one-step synthesis of large-scale graphene flakes and high-purity single-walled carbon nanotubes.
Transparent zebrafish embryos have proved useful model hosts to visualize and functionally study interactions between innate immune cells and intracellular bacterial pathogens, such as Salmonella typhimurium and Mycobacterium marinum. Micro-injection of bacteria and multi-color fluorescence imaging are essential techniques involved in the application of zebrafish embryo infection models.
We describe examination of fetal cardiac function with contemporary functional fetal echocardiography and fetoplacental Doppler ultrasound using the VisualSonics VEVO 2100 microultrasound in a surgically induced model of intrauterine fetal growth restriction in a rabbit.
Improved understanding of pancreatic cancer biology is critically needed to enable the development of better therapeutic options to treat pancreatic cancer. To address this need, we demonstrate an orthotopic model of pancreatic cancer that permits non-invasive monitoring of cancer progression using in vivo bioluminescence imaging.
Analysis of vestibular hair cell function is complicated by their location deep within the hardest part of the skull, the petrous temporal bone. Most functional hair cell studies have used acutely isolated hair cells. Here we describe a semi-intact preparation of mouse vestibular epithelium for electrophysiological and two-photon microscopy studies.
Establishment of human models of the blood-brain barrier (BBB) can benefit research into brain conditions associated with BBB failure. We describe here an improved technique for preparation of a contact BBB model, which permits coculturing of human astrocytes and brain endothelial cells on the opposite sides of a porous membrane.
Intramyocardial cell delivery in murine models of cardiovascular diseases, such as hypertension or myocardial infarction, is widely used to test the therapeutic potential of different cell types in regenerative studies. Therefore, a detailed description and a clear visualization of this surgical procedure will help to define the limits and advantages of cardiovascular cell therapeutic analyses in small rodents.
Time-lapse microscopy allows the visualization of developmental processes. Growth or drift of samples during image acquisition reduces the ability to accurately follow and measure cell movements during development. We describe the use of open source image processing software to correct for three dimensional sample drift over time.
Ascorbate plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. Here we describe a medium-throughput, specific and inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Proteomic analysis of any cell type is highly dependent on both purity and pre-fractionation of the starting material in order to de-complexify the sample prior to liquid chromatography mass spectrometry (MS). By using back-flushing techniques, pure spermatozoa can be obtained from rodents. Following digestion, phosphopeptides can be enriched using TiO2.
Ovarian cancer cell invasion into the mesothelial lining of the peritoneum is a dynamic process over time. Utilizing a real time analyzer, the invasive capacity of ovarian cancer cells in a spheroid-mesothelial cell co-culture model can be quantified over prolonged time periods, providing insights into factors regulating the metastatic process.
Mouse embryonic fibroblast can be reprogrammed into induced pluripotent stem cells at low efficiency by the forced expression of transcription factors Oct-4, Sox-2, Klf-4, c-Myc. The rare intermediates of the reprogramming reaction are FACS isolated via labeling with antibodies against cell surface makers Thy-1.2, Ssea-1, and Epcam.
The assessment of respiratory physiology has traditionally relied upon techniques, which require restraint or sedation of the animal. Unrestrained whole-body plethysmography, however, provides precise, non-invasive, quantitative analysis of respiratory physiology in animal models. In addition, the technique allows repeated respiratory assessment of mice allowing for longitudinal studies.
Reporter cell lines offer a means to visualize, track and isolate cells of interest from heterogeneous populations. However, gene-targeting using conventional homologous recombination in human embryonic stem cells is extremely inefficient. Herein, we describe targeting CNS midbrain specific transcription factor PITX3 locus with EGFP using zinc-finger nuclease enhanced homologous recombination.
We describe a protocol to isolate and culture human amnion epithelial cells (hAECs) using animal product-free reagents in accordance with current good manufacturing practices (cGMP) guidelines.
Monocytes are integral components of the human innate immune system that rely on glycolytic metabolism when activated. We describe a flow cytometry protocol to measure glucose transporter expression and glucose uptake by total monocytes and monocyte subpopulations in fresh whole blood.
Zebrafish are an excellent model to study muscle function and disease. During early embryogenesis zebrafish begin regular muscle contractions producing rhythmic swimming behavior, which is altered when the muscle is disrupted. Here we describe a touch-evoked response and locomotion assay to examine swimming performance as a measure of muscle function.
This protocol describes the isolation and quantification of high-density lipoprotein small RNAs.
Quantitatively mapping metals in tissue by laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) is a sensitive analytical technique that can provide new insight into how metals participate in normal function and disease processes. Here, we describe a protocol for quantitatively imaging metals in thin sections of mouse neurological tissue.
Mitochondria can utilize the electrochemical potential across their inner membrane (ΔΨm) to sequester calcium (Ca2+), allowing them to shape cytosolic Ca2+ signaling within the cell. We describe a method for simultaneously measuring mitochondria Ca2+ uptake and ΔΨm in live cells using fluorescent dyes and confocal microscopy.
Here, we present a protocol to visualize blood vessel formation in vivo and in real-time in 3D scaffolds by multiphoton microscopy. Angiogenesis in genetically modified scaffolds was studied in a murine calvarial critical bone defect model. More new blood vessels were detected in the treatment group than in controls.
Live tracking of individual WT retinal progenitors in distinct genetic backgrounds allows for the assessment of the contribution of cell non-autonomous signaling during neurogenesis. Here, a combination of gene knockdown, chimera generation via embryo transplantation and in vivo time-lapse confocal imaging was utilized for this purpose.
Intervertebral disc degeneration is a significant contributor to back pain and a leading cause of disability worldwide. Numerous animal models of intervertebral disc degeneration exist. We demonstrate an ovine model of intervertebral disc degeneration, utilizing a drill bit, which achieves a consistent disc injury and reproducible level of disc degeneration.
A protocol is presented for X-ray crystallography using protein microcrystals. Two examples analyzing in vivo-grown microcrystals after purification or in cellulo are compared.
Ivacaftor and ivacaftor-lumacaftor combination are two new CF drugs. However, there is still a dearth of understanding on their PK/PD and pharmacology. We present an optimized HPLC-MS technique for the simultaneous analysis of ivacaftor and its major metabolites, and lumacaftor.
We describe a protocol to measure transmigration by monocytes across human endothelial monolayers and their subsequent maturation into foam cells. This provides a versatile method to assess the atherogenic properties of monocytes isolated from people with different disease conditions and to evaluate factors in blood which may enhance this propensity.
This protocol describes an approach for manufacturing aligned steel fiber reinforced cementitious composite by applying a uniform electromagnetic field. Aligned steel fiber reinforced cementitious composite exhibits superior mechanical properties to ordinary fiber reinforced concrete.
We describe here a fluorometric cell-free biochemical assay for determination of HDL-lipid peroxidation. This rapid and reproducible assay can be used to determine HDL function in large scale studies and can contribute to our understanding of HDL function in human disease.
Macrophage extracellular traps are a newly described entity. This article will concentrate on confocal microscopy methods and how they are visualized in vitro and in vivo from lung samples.
Microinjection of zebrafish embryos and larvae is a crucial but challenging technique used in many zebrafish models. Here, we present a range of microscale tools to aid in the stabilization and orientation of zebrafish for both microinjection and imaging.
Here, we present a protocol for the detection and quantification of Plasmodium falciparum in infected aqueous red blood cells using an attenuated total reflection infrared spectrometer and multivariate data analysis.
Mice represent an invaluable in vivo model to study infection and diseases caused by gastrointestinal microorganisms. Here, we describe the methods used to study bacterial colonization and histopathological changes in mouse models of Helicobacter pylori-related disease.
A protocol for the isolation of primary microglia from murine brains is presented. This technique aids in furthering the current understanding of neurological conditions. Density gradient centrifugation and magnetic separation are combined to produce sufficient yield of a highly pure sample. Furthermore, we outline the steps for characterization of microglia.
A procedure is presented for the refolding of the dCACHE periplasmic ligand binding domain of Campylobacter jejuni chemoreceptor Tlp3 from inclusion bodies and the purification to yield milligram quantities of protein.
We present an automated method for three-dimensional reconstruction of the Caenorhabditis elegans germline. Our method determines the number and position of each nucleus within the germline and analyses germline protein distribution and cytoskeletal structure.
Circulating microRNAs have shown promise as biomarkers for cardiovascular diseases and acute myocardial infarctions. In this study, we describe a protocol for miRNA extraction, reverse transcription, and digital PCR for the absolute quantification of miRNAs in the serum of patients with cardiovascular disease.
Here we describe a protocol for the generation of cationic nanoliposomes, which is based on the dry-film method and can be used for the safe and efficient delivery of in vitro transcribed messenger RNA.
Here, we present a detailed protocol for identifying homologous recombination events that occurred in mouse embryonic stem cells using Southern blotting and/or PCR. This method is exemplified by the generation of nonmuscle myosin II genetic replacement mouse models using traditional embryonic stem cell-based homologous recombination-mediated targeting technology.
Here, we present a method for ex vivo culture of long murine bones at both fetal and newborn stages, suitable for analyzing bone and cartilage development and homeostasis in controlled conditions while recapitulating the in vivo process.
Presented here is a protocol to investigate the effects of home-based prescribed pulmonary exercise in stable chronic obstructive pulmonary disease (COPD) patients, which is modified based on traditional Chinese exercises according to dyspnea and limited exercise capacity observed in COPD patients.
Transcranial optical imaging allows wide-field imaging of cerebrospinal fluid transport in the cortex of live mice through an intact skull.
Cognate J-domain proteins cooperate with the Hsp70 chaperone to assist in a myriad of biological processes ranging from protein folding to degradation. Here, we describe an in situ proximity ligation assay, which allows the monitoring of these transiently formed chaperone machineries in bacterial, yeast and human cells.
This manuscript describes two radiotracer administration protocols for FDG-PET (constant infusion and bolus plus infusion) and compares them to bolus administration. Temporal resolutions of 16 s are achievable using these protocols.
Automation is key to upscaling and cost management in cell manufacturing. This manuscript describes the use of a counterflow centrifugal cell processing device for automating the buffer exchange and cell concentration steps for small-scale bioprocessing.
A protocol is presented for the synthesis of information-encoded peptoid oligomers and for the sequence-directed self-assembly of these peptoids into molecular ladders using amines and aldehydes as dynamic covalent reactant pairs and Lewis acidic rare-earth metal triflates as multi-role reagents.
Here, we present a method to investigate diurnal rhythms in performance following accurate categorization of participants into circadian phenotype groups based on the Munich ChronoType Questionnaire, gold standard circadian phase biomarkers and actigraphic measures.
Extracellular DNA (ecDNA) released during cell death is proinflammatory and contributes to inflammation. Measurement of ecDNA at the site of injury can determine the efficacy of therapeutic treatment in the target organ. This protocol describes the use of a machine learning tool to automate measurement of ecDNA in kidney tissue.
Described here is a protocol that enables the colorimetric quantification of the amount of food eaten within a defined interval of time by Drosophila melanogaster larvae exposed to diets of different macronutrient quality. These assays are conducted in the context of a neuronal thermogenetic screen.
Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR) provides a powerful platform for bacterial studies, enabling to achieve nanoscale resolution. Both, mapping of subcellular changes (e.g., upon cell division) as well as comparative studies of chemical composition (e.g., arising from drug resistance) can be conducted at a single cell level in bacteria.
Here, we describe, compare, and contrast two different techniques for accurate follicle counting of fixed mouse ovarian tissues.
Skeletal muscle regeneration is driven by tissue resident muscle stem cells, which are impaired in many muscle diseases such as muscular dystrophy, and this results in the inability of muscle to regenerate. Here, we describe a protocol that allows the examination of muscle regeneration in zebrafish models of muscle disease.
Haemophilus influenzae induces inflammation in the respiratory tract. This article will focus on the use of flow cytometry and confocal microscopy to define immune responses by phagocytes and lymphocytes in response to this bacterium.
This paper describes a method for modeling total intravenous anesthesia (TIVA) during cancer resection surgery in mice. The goal is to replicate key features of anesthesia delivery to patients with cancer. The method allows investigation of how anesthetic technique affects cancer recurrence after resection surgery.
Typical microtubule inhibitors, used widely in basic and applied research, have far-reaching effects on cells. Recently, photostatins emerged as a class of photoswitchable microtubule inhibitors, capable of instantaneous, reversible, spatiotemporally precise manipulation of microtubules. This step-by-step protocol details the application of photostatins in a 3D live preimplantation mouse embryo.
A standardized pipeline is presented for examining cerebellum grey matter morphometry. The pipeline combines high-resolution, state-of-the-art approaches for optimized and automated cerebellum parcellation and voxel-based registration of the cerebellum for volumetric quantification.
A comprehensive laboratory protocol and analysis workflow are described for a rapid, cost-effective, and straightforward colorimetric cell-based assay to detect neutralizing elements against AAV6.
Delivery of therapeutics directly into the central nervous system is one way of circumventing the blood-brain barrier. The present protocol demonstrates intracerebroventricular injection for subsequent collection of cerebrospinal fluid and bodily organs. This facilitates the investigation of drug pharmacokinetics and pharmacodynamics in animal models for developing new treatments.
A model mimicking the clinical scenario of burn injury and infection is necessary for furthering burn research. The present protocol demonstrates a simple and reproducible rat burn infection model comparable to that in humans. This facilitates the study of burn and infections following burn for developing new topical antibiotic treatments.
Mitophagy is the primary mechanism of mitochondrial quality control. However, the evaluation of mitophagy in vivo is hindered by the lack of reliable quantitative assays. Presented here is a protocol for the observation of mitophagy in living cells using a cell-permeant green-fluorescent mitochondria dye and a red-fluorescent lysosome dye.
Pregnancy establishment is a dynamic process involving complex embryo and uterine crosstalk. The precise contributions of the maternal uterine environment to these processes remain an active area of investigation. Here, detailed protocols are provided to aid in designing in vivo animal models to address these research questions.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。