JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A novel technique for the detection of low abundance endogenous receptors present in zebrafish embryos is described. We have named it AFLIP because it consists of affinity labeling of the receptor by its ligand linked to immunoprecipitation.

摘要

By combining the powers of Affinity Labeling and Immunoprecipitation (AFLIP), a technique for the detection of low abundance receptors in zebrafish embryos has been implemented. This technique takes advantage of the selectivity and sensitivity conferred by affinity labeling of a given receptor by its ligand with the specificity of the immunoprecipitation. We have used AFLIP to detect the type III TGF-β receptor (TGFBR3), also know as betaglycan, during early zebrafish development. AFLIP was instrumental in validating the efficacy of a TGFBR3 morphant zebrafish phenotype. In the first step, embryo protein extracts are prepared and used to generate 125I-TGF-β2-TGFBR3 complexes that are purified by immunoprecipitation. Later, these complexes are covalently cross-linked and revealed using SDS-PAGE separation and autoradiography detection. This technique requires the availability of a labeled ligand for, and a specific antibody against, the receptor to be detected, and shall be easily adapted to identify any growth factor or cytokine receptor that meets these requirements.

引言

Specific detection of proteins expressed during embryonic development is required to validate expression profiles obtained by measuring their cognate mRNAs with RT-PCR or in situ hybridization (ISH). This is commonly achieved by a western blot of embryo extracts followed by detection with specific antibodies. However, this approach is hard to apply to proteins that are in very low abundance, or that have properties that hamper their quantitative transfer during their blotting. Betaglycan, also known as the type III transforming growth factor β (TGF-β) receptor (TGFBR3), is an example of these difficulties. TGFBR3 is a part time membrane proteoglycan that binds TGF-β through its core protein1, with notably higher affinity for the isoform TGF-β2, a property that distinguishes it from any other TGF-β binding protein2. TGFBR3 in the zebrafish is expressed from 8 hpf on, reaching a maximum by 72 hpf, as detected by RT-PCR of its mRNA3.

However, despite the availability of a very specific antibody3, every attempt to detect its translated product by western blot proved unsuccessful. Reckoning that TGFBR3's proteoglycan nature, as well as putative low abundance may be accountable for this failure, a detection method, AFLIP, which takes advantage of TGFBR3 high affinity for TGF-β2 was devised. In this method a protein extract from pooled embryos is allowed to specifically bind 125I-labeled TGF-β2 and the receptor-ligand complexes are purified by immunoprecipitation and cross-linked before separation by SDS-PAGE. The migration patterns observed by autoradiography of the gels revealed the presence and nature of the labeled receptor species. This approach combines the ligand specificity of affinity labeling with immunoprecipitation by specific antibodies, increasing detection range, avoiding the inefficient transfer blotting of TGFBR3. Due to its inherent properties, the AFLIP assay is not a quantitative assay but can be used to confidently gauge relative experimental differences in the analyzed receptor.

研究方案

在动物身上进行的所有实验均委员会实验室动物护理和墨西哥自治国立大学(UNAM)使用批准的,由CICUAL协议号:FLC40-14。 (CICUAL:"科米特Institucional第下午CuidadoŸUSO德洛斯阿尼马莱斯德的Laboratorio德尔研究所德FisiologìaCelular,大学墨西哥国立自治")。

1.胚胎蛋白提取物的制备

  1. 收集100 - 200的胚胎为每个条件在所希望的阶段比较(morphants与野生型),例如72小时后受精(HPF)。
  2. 在含鱼水之培养皿的地方胚胎( 见表1)和手动dechorionate用细尖镊子胚胎。避免在这一步骤(或整个协议的任何其他蛋白酶),链霉蛋白酶,因为它可能消化针对性的受体。
  3. 胚胎放置在1.5 ml离心管,洗胚胎TW用1×磷酸盐缓冲液(PBS)的冰( 见表1)。
  4. 加入500微升deyolk缓冲液( 见表1)。
  5. ( - 40倍30)在溶液中的胚胎轻轻吹打向上和向下释放最蛋黄。 72高倍视野48 HPF胚胎使用蓝色和黄色的枪头,分别为。黄色提示可能需要稍微切割,以避免破坏胚胎。成功蛋黄释放可以通过显微镜下观察胚胎进行检查。
  6. 离心600 XG 15秒收集胚胎。
  7. 用吸管小心弃上清。
  8. 洗涤胚胎两次用500μl洗涤缓冲液通过以最低速度轻轻涡旋( 见表1)。
  9. 离心600 XG 15秒收集胚胎。
  10. 从这里出发,继续在4℃的过程。
  11. 用吸管小心弃上清。
  12. 重悬的胚胎在350微升裂解缓冲液(见表1),并使用塑料杵均化。
  13. 孵育裂解胚胎搅拌30分钟上的试管摇杆在4℃。
  14. 离心机以除去不溶的碎片裂解胚胎在11000×g离心15分钟。
  15. 转印用吸管至新管清除上清液。
  16. 确定由Bradford蛋白测定4,或其它合适的过程总蛋白。如果使用Bradford测定法,在洗涤剂礼物的当量浓度的裂解缓冲液的存在下进行校准曲线,因为它们会导致标准4的蛋白的低估。

2.内源受体蛋白质的检测

  1. 亲和标记和免疫(所有这些步骤在4℃)
    1. 放置400 - 500微克总胚胎蛋白质在1.5ml微量离心管中并稀释至1微克/微升用缓冲液1( 见表1)。
      注意:为了获得500微克总胚胎蛋白,大约100 - 200胚胎必须首先处理。 72 HPF胚胎常规收率总胚胎蛋白质,这是足够的β聚糖检测的〜5微克。
    2. 加标记的TGF-β2的库存的足够体积,以达到150微米的最终浓度,并于4℃在试管摇杆2小时在搅拌孵育。 TGF-β2必须AFLIP开始前由氯胺T方法如通过Cheifetz 等人 5所述进行标记,用125 I。
      注意:使用屏蔽,同时处理125 I标记配体以尽量减少暴露。
    3. 添加针对感兴趣的受体未稀释的抗体的足够体积,以达到1:100稀释并在4℃下继续温育另外2小时(温育可以是O / N)。这是抗血清#31中的最佳稀释度,在此研究中使用的和其他地方描述的3,但根据不同的一个的质量tibody,更大或更小的稀释可能是最佳的。
    4. 加入50μl的合适的免疫球蛋白结合珠(例如,G蛋白 - 琼脂糖,这是以前在TNTE平衡并重新悬浮1:5在TNTE其原始体积的),并在4℃孵育50分钟以上的试管摇杆搅动C。
    5. 恢复由微量离心珠粒在11000×g离心20秒。
    6. 在适当的放射性垃圾容器弃上清。
    7. 用1ml的IP洗涤缓冲液( 见表1)的,通过涡旋和微量离心洗IP的珠粒三次在11000×g离心,每次20秒。
    8. 悬浮IP-珠250微升IP洗涤缓冲。
    9. 添加1.5微升二琥珀酰亚胺辛二酸酯的(DSS,溶解在DMSO中,在10毫克/毫升)。只是在这一步使用前准备DSS解决方案。
    10. 在4℃搅拌下孵育15分钟。
    11. 为了解渴交联反应,加入500μlØ˚FIP洗涤缓冲液,辅以足三Cl pH为7.4的股票达到25毫米的Tris-CL。 TRIS中游离氨基捕捉未反应的决策支持系统。
    12. 离心机在11000×g离心20秒收集IP的珠并丢弃上清液。
    13. 悬浮IP-珠在减少Laemmli缓冲液的30微升。
    14. 煮沸样品在94℃5分钟。
    15. 任选地,分析使用制造商的方案在γ计数器中的样品。
  2. 样品分析
    1. 受试者样品变性SDS-PAGE。在对受体的质量的适当百分比使用聚丙烯酰胺和下标准程序运行凝胶。
    2. 浸泡在固定液凝胶( 见表1)在RT下30分钟。
    3. 用蒸馏水冲洗凝胶15分钟。
    4. 将凝胶在以前水合过滤纸和保鲜膜薄膜覆盖。
    5. 在80℃进行1小时干凝胶。
    6. 暴露在白色磷光SCRE凝胶恩在室温O / N。
    7. 使用扫描使用制造商的协议的磷光暴露屏幕。

结果

图1示出了具有AFLIP获得的代表性结果。在泳道1信号来自于125 I配体共价连接到或斑马鱼β聚糖核心蛋白(BG核心,150 kDa的标记下面)或已经由糖胺聚糖的附件(GAG,涂抹处理,以它的蛋白聚糖的形式对BG芯范围从170 kDa的凝胶的顶部)。迁移的这个模式中,锋利的核心蛋白加上涂蛋白聚糖(由于GAG链的长度异质),是TGFBR3 2的特征。由于DSS不共?...

讨论

Western印迹用针对感兴趣的蛋白质的特异性抗体的使用是一种有价值的工具胚胎发育过程中以研究其表达7。然而,高度糖基化的蛋白质的免疫印迹尚未十分成功,由于其低效率的转让和弱结合到硝酸纤维素或PVDF膜8,9。

蛋白多糖是因为他们的带负电荷的,并且不很好地结合要么聚苯乙烯表面或疏水印迹膜共价结合的糖胺聚糖链(GAG)的这个缺点的一个很好的例...

披露声明

The authors have nothing to disclose.

致谢

The authors thank Gilberto Morales for fish care and maintenance, and Drs. Claudia Rivera and Hector Malagòn (IFC-UNAM Animal Facility) for their help in rabbit immunization. This work was supported by grants from CONACYT 131226 and PAPIIT-DGAPA-UNAM IN204916.

材料

NameCompanyCatalog NumberComments
Disuccinimidyl suberate (DSS)ThermoFisher Scientific21555
Protein G Sepharose 4 Fast FlowGE Healthcare Life Sciences17-0618-01
Gel Dryer Model 583 BIO-RAD1651745
Typhoon 9400GE Healthcare Life Sciences63-0055-78
Cobra II Auto gamma counterPackard
Exposure CassetteMolecular Dynamics63-0035-44
NaClJ.T. Baker3624
KClJ.T. Baker3040
Na2HPO4J.T. Baker3828
K2HPO4J.T. Baker3246
CH3OHJ.T. Baker9070
CH3COOHJ.T. Baker9508
HCHOJ.T. Baker2106
SDSSigma-AldrichL4509
EDTASigma-AldrichED
Triton X-100Sigma-AldrichT9284
CaCl2Sigma-AldrichC3306
NaHCO3Fisher ScientificS233
PMSFSigma-AldrichP7626
Crystal Sea Marine MixMarine Enterprises Internationalhttp://www.meisalt.com/Crystal-Sea-Marinemix

参考文献

  1. López-Casillas, F., et al. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-β receptor system. Cell. 67 (4), 785-795 (1991).
  2. Cheifetz, S., Andres, J. L., Massague, J. The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J. Biol. Chem. 263 (32), 16984-16991 (1988).
  3. Kamaid, A., et al. Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish. Genesis. 53, 583-603 (2015).
  4. Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248-254 (1976).
  5. Cheifetz, S., et al. Distinct transforming growth factor-b receptor subsets as determinants of cellular responsiveness to three TGF-b isoforms. J. Biol. Chem. 265, 20533-20538 (1990).
  6. López-Casillas, F., Wrana, J. L., Massagué, J. Betaglycan presents ligand to the TGFβ signaling receptor. Cell. 73 (7), 1435-1444 (1993).
  7. Towbin, H., Staehelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. PNAS USA. 76 (9), 4350-4354 (1979).
  8. Maccari, F., Volpi, N. Direct and specific recognition of glycosaminoglycans by antibodies after their separation by agarose gel electrophoresis and blotting on cetylpyridinium chloride-treated nitrocellulose membranes. Electrophoresis. 24 (9), 1347-1352 (2003).
  9. Volpi, N., Maccari, F. Glycosaminoglycan blotting and detection after electrophoresis separation. Methods Mol Biol (Clifton, N.J). 1312, 119-127 (2015).
  10. Guesdon, J. L., Ternynck, T., Avrameas, S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 27 (8), 1131-1139 (1979).
  11. Bratthauer, G. L. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol Biol (Clifton, N.J). 588, 257-270 (2010).
  12. Heimer, R., Molinaro, L., Sampson, P. M. Detection by 125I-cationized cytochrome c of proteoglycans and glycosaminoglycans immobilized on unmodified and on positively charged Nylon 66. Anal. Biochem. 165 (2), 448-455 (1987).
  13. Das, M., et al. Specific radiolabeling of a cell surface receptor for epidermal growth factor. PNAS USA. 74 (7), 2790-2794 (1977).
  14. Massague, J., Guillette, B., Czech, M., Morgan, C., Bradshaw, R. Identification of a nerve growth factor receptor protein in sympathetic ganglia membranes by affinity labeling. J. Biol. Chem. 256 (18), 9419-9424 (1981).
  15. Massague, J., Pilch, P. F., Czech, M. P. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. PNAS USA. 77 (12), 7137-7141 (1980).
  16. Hoosein, N. M., Gurd, R. S. Identification of Glucagon Receptors in Rat Brain. PNAS USA. 81, 4368-4372 (1984).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

114

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。