JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Developmental Biology

Affinity Labeling Detection of Endogenous Receptors from Zebrafish Embryos

Published: August 31st, 2016

DOI:

10.3791/54405

1Cell and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México

A novel technique for the detection of low abundance endogenous receptors present in zebrafish embryos is described. We have named it AFLIP because it consists of affinity labeling of the receptor by its ligand linked to immunoprecipitation.

By combining the powers of Affinity Labeling and Immunoprecipitation (AFLIP), a technique for the detection of low abundance receptors in zebrafish embryos has been implemented. This technique takes advantage of the selectivity and sensitivity conferred by affinity labeling of a given receptor by its ligand with the specificity of the immunoprecipitation. We have used AFLIP to detect the type III TGF-β receptor (TGFBR3), also know as betaglycan, during early zebrafish development. AFLIP was instrumental in validating the efficacy of a TGFBR3 morphant zebrafish phenotype. In the first step, embryo protein extracts are prepared and used to generate 125I-TGF-β2-TGFBR3 complexes that are purified by immunoprecipitation. Later, these complexes are covalently cross-linked and revealed using SDS-PAGE separation and autoradiography detection. This technique requires the availability of a labeled ligand for, and a specific antibody against, the receptor to be detected, and shall be easily adapted to identify any growth factor or cytokine receptor that meets these requirements.

Specific detection of proteins expressed during embryonic development is required to validate expression profiles obtained by measuring their cognate mRNAs with RT-PCR or in situ hybridization (ISH). This is commonly achieved by a western blot of embryo extracts followed by detection with specific antibodies. However, this approach is hard to apply to proteins that are in very low abundance, or that have properties that hamper their quantitative transfer during their blotting. Betaglycan, also known as the type III transforming growth factor β (TGF-β) receptor (TGFBR3), is an example of these difficulties. TGFBR3 is a part time membrane proteoglycan....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experiments carried out in animals were approved by the Committee for Laboratory Animal Care and Use of the Autonomous National University of México (UNAM), under the CICUAL-Protocol number: FLC40-14. (CICUAL: "Comité Institucional para el Cuidado y Uso de los Animales de Laboratorio del Instituto de Fisiologìa Celular, Universidad Nacional Autònoma de México").

1. Preparation of Embryo Protein Extract

  1. Collect 100 - 200 embryos for each conditio.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 1 shows a representative result obtained with AFLIP. Signals in Lane 1 come from the 125I-ligand covalently linked to either the zebrafish betaglycan core protein (BG core, below the 150 kDa marker) or the BG core that has been processed to its proteoglycan form by attachment of glycosaminoglycans (GAG, smear ranging from 170 kDa to the top of the gel). This pattern of migration, a sharp core protein plus a smeared proteoglycan (due to heterogeneity in t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The use of Western blots with a specific antibody against a protein of interest is a valuable tool to study its expression7 during embryogenesis. However, immunoblotting of highly-glycosylated proteins has not been very successful due to their inefficient transfer and weak binding to nitrocellulose or PVDF membranes8,9.

Proteoglycans are a good example of this shortcoming, because of their covalently attached glycosaminoglycan chains (GAG) that are negatively charged and .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors thank Gilberto Morales for fish care and maintenance, and Drs. Claudia Rivera and Hector Malagòn (IFC-UNAM Animal Facility) for their help in rabbit immunization. This work was supported by grants from CONACYT 131226 and PAPIIT-DGAPA-UNAM IN204916.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Disuccinimidyl suberate (DSS) ThermoFisher Scientific 21555
Protein G Sephraose 4 Fast Flow GE Healthcare Life Sciences 17-0618-01
Gel Dryer Model 583  BIO-RAD 1651745
Typhoon 9400 GE Healthcare Life Sciences 63-0055-78
Cobra II Auto gamma counter Packard
Exposure Cassette Molecular Dynamics 63-0035-44
NaCl J.T. Baker 3624
KCl J.T. Baker 3040
Na2HPO4 J.T. Baker 3828
K2HPO4 J.T. Baker 3246
CH4O J.T. Baker 9070
C2H4O2 J.T. Baker 9508
CH2O J.T. Baker 2106
SDS Sigma-Aldrich L4509
EDTA Sigma-Aldrich ED
Triton X-100 Sigma-Aldrich T9284
CaCl2 Sigma-Aldrich C3306
NaHCO3 Fisher Scientific S233
PMSF Sigma-Aldrich P7626
Crystal Sea Marine Mix Marine Enterprises International http://www.meisalt.com/Crystal-Sea-Marinemix

  1. López-Casillas, F., et al. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-β receptor system. Cell. 67 (4), 785-795 (1991).
  2. Cheifetz, S., Andres, J. L., Massague, J. The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J. Biol. Chem. 263 (32), 16984-16991 (1988).
  3. Kamaid, A., et al. Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish. Genesis. 53, 583-603 (2015).
  4. Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248-254 (1976).
  5. Cheifetz, S., et al. Distinct transforming growth factor-b receptor subsets as determinants of cellular responsiveness to three TGF-b isoforms. J. Biol. Chem. 265, 20533-20538 (1990).
  6. López-Casillas, F., Wrana, J. L., Massagué, J. Betaglycan presents ligand to the TGFβ signaling receptor. Cell. 73 (7), 1435-1444 (1993).
  7. Towbin, H., Staehelin, T., Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. PNAS USA. 76 (9), 4350-4354 (1979).
  8. Maccari, F., Volpi, N. Direct and specific recognition of glycosaminoglycans by antibodies after their separation by agarose gel electrophoresis and blotting on cetylpyridinium chloride-treated nitrocellulose membranes. Electrophoresis. 24 (9), 1347-1352 (2003).
  9. Volpi, N., Maccari, F. Glycosaminoglycan blotting and detection after electrophoresis separation. Methods Mol Biol (Clifton, N.J). 1312, 119-127 (2015).
  10. Guesdon, J. L., Ternynck, T., Avrameas, S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 27 (8), 1131-1139 (1979).
  11. Bratthauer, G. L. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol Biol (Clifton, N.J). 588, 257-270 (2010).
  12. Heimer, R., Molinaro, L., Sampson, P. M. Detection by 125I-cationized cytochrome c of proteoglycans and glycosaminoglycans immobilized on unmodified and on positively charged Nylon 66. Anal. Biochem. 165 (2), 448-455 (1987).
  13. Das, M., et al. Specific radiolabeling of a cell surface receptor for epidermal growth factor. PNAS USA. 74 (7), 2790-2794 (1977).
  14. Massague, J., Guillette, B., Czech, M., Morgan, C., Bradshaw, R. Identification of a nerve growth factor receptor protein in sympathetic ganglia membranes by affinity labeling. J. Biol. Chem. 256 (18), 9419-9424 (1981).
  15. Massague, J., Pilch, P. F., Czech, M. P. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. PNAS USA. 77 (12), 7137-7141 (1980).
  16. Hoosein, N. M., Gurd, R. S. Identification of Glucagon Receptors in Rat Brain. PNAS USA. 81, 4368-4372 (1984).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved