JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Lymphocytes are the major players in adaptive immune responses. Here, we present a lymphocyte purification protocol to determine the physiological functions of the desired molecules in lymphocyte activation in vitro and in vivo. The described experimental procedures are suitable for comparing functional capacities between control and genetically modified lymphocytes.

摘要

B and T cells, with their extremely diverse antigen-receptor repertoires, have the ability to mount specific immune responses against almost any invading pathogen1,2. Understandably, such intricate abilities are controlled by a large number of molecules involved in various cellular processes to ensure timely and spatially regulated immune responses3. Here, we describe experimental procedures that allow rapid isolation of highly purified murine lymphocytes using magnetic cell sorting technology. The resulting purified lymphocytes can then be subjected to various in vitro or in vivo functional assays, such as the determination of lymphocyte signaling capacity upon stimulation by immunoblotting4 and the investigation of proliferative abilities by 3H-thymidine incorporation or carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling5-7. In addition to comparing the functional capacities of control and genetically modified lymphocytes, we can also determine the T cell stimulatory capacity of antigen-presenting cells (APCs) in vivo, as shown in our representative results using transplanted CFSE-labeled OT-I T cells.

引言

Mature lymphocytes generally exist in the resting state if there is no pre-existing infection or inflammation in the individual. Therefore, it is important to retain the naïve status of lymphocytes during the isolation process before performing in vitro or in vivo functional assays. The key to ensuring consistent and reproducible results is to limit any unnecessary manipulation of the cells.

Magnetic cell sorting utilizes antibodies and microbeads to label cells so as to enrich the cell population of interest. With this approach, there are two purification strategies: positive enrichment and negative depletion. Positive enrichment enriches the cell population of interest using an antibody that binds to the target cells. Negative depletion, on the other hand, depletes non-target cells, leaving the cell population of interest. In our lab, we prefer negative depletion to positive enrichment because the binding of antibodies to the target cells could potentially alter cell features and behavior. In fact, many established cell surface markers suitable for the isolation of a particular cell population are also functional receptors.

Magnetic cell sorting not only yields highly pure populations of viable target cells, it is also less time-consuming and avoids the cellular stress induced by high-pressure flow used in fluorescence-activated cell sorting (FACS). By labeling the unwanted cell populations and depleting them using a magnetic separation column, we are able to perform rapid cell isolation without compromising the viability of the target cell population. In this protocol, we demonstrate the use of negative depletion strategies to purify naïve B cells or T cells.

Access restricted. Please log in or start a trial to view this content.

研究方案

所有小鼠饲养和无特定病原体的条件下维持和所有小鼠协议按照机构动物护理和使用委员会的指导方针进行。

1.缓冲液和试剂的制备

  1. 制备完整罗斯韦尔园区纪念研究所(RPMI)培养基(10%热灭活胎牛血清(FBS),2mM的L-谷氨酰胺,青霉素(100国际单位/毫升)/链霉素(100微克/毫升),55μM2-巯基乙醇)。
  2. 准备20X平衡盐溶液(BSS)股票1和库存2,分别。
    1. 准备20X BSS股票1(111毫米葡萄糖,8.8毫米磷酸钾,26.7磷酸钠1升无菌水二元)和最终音量调整前加40毫升中含0.5%酚红20倍BSS股票1。无菌过滤器采用0.2微米的过滤器,在4℃下储存之前。
    2. 制备20倍的BSS库存2(25.8毫氯化钙二水合物,107毫氯化钾,2.73酸钠沟道loride,19.6毫氯化镁六水合物,于1升无菌水16.6毫硫酸镁)。无菌过滤器采用0.2微米的过滤器,在4℃下储存之前。
    3. 要准备1X BSS的实验使用,稀释50毫升BSS股票1和50毫升BSS股票2,另外,400毫升无菌水各。结合这两个稀释溶液,调整至pH 7,并添加20毫升FBS(2%)。顶起来使用无菌水和无菌过滤器使用0.2微米的过滤器1升。
      注:BSS储液应单独准备,因为集中的BSS股票的混合,直接会导致沉淀。
  3. 红细胞(RBC)裂解液
    1. 为了制备RBC裂解缓冲液,混合9份氯乙烯库存铵(155毫氯化物在无菌水中铵)在使用前1份股票Tris碱(在无菌水中130毫摩尔Tris(羟甲基)氨基甲烷,pH值7.65)。
      注意:在4℃的氯化铵和Tris碱商店无菌原液。准备裂解buffer新鲜确保红细胞裂解效率。

2.代脾或淋巴结淋巴细胞悬液的

注:以制备用于小鼠安乐死之前实验所需的所有试剂和设备,并尽快产生淋巴细胞的单细胞悬浮液,以维持高的细胞存活率是重要的。

  1. 颈椎脱位或CO 2窒息安乐死实验老鼠。
    注意:这一步起,所有实验程序应无菌条件下进行。
  2. 做任何切口之前浸整个鼠标放到70%的乙醇。取出脾和淋巴结无菌8,并将它们置于含5毫升的冰冷RPMI / FBS(RPMI用2%FBS)或BSS / FBS(从步骤1.2.3)独立15ml试管。
    注:由于BSS防止高效RBC裂解,使用RPMI的脾细胞悬浮液的制备,并切换到BSS AFTE- [R RBC裂解。
  3. 以产生从脾脏或淋巴结单细胞悬浮液,将器官(多个)在无菌100微米的细胞滤网目的两片在含有2毫升冰冷的RPMI / FBS或BSS / FBS的培养皿。使用1毫升注射器的柱塞,捣烂器官(S),直到它已被撕裂成很细的部分。
  4. 细胞悬液转移到15毫升管中并洗涤细胞过滤用冰冷的RPMI / FBS或BSS / FBS的啮合。收集剩余的细胞悬浮液,将其添加到相同的15毫升管中,并在4℃下降速在453×g离心5分钟。去除上清。
    注:加入RBC裂解缓冲液或培养基中的后续步骤之前轻弹用手指管重悬浮沉淀的细胞。
  5. 将细胞悬浮液的离心分离过程中制备室温(RT)RBC裂解缓冲液(见步骤1.3)。制粒细胞并除去上清液后,再停止与每10 8个细胞1毫升RBC裂解缓冲液中的细胞。 INCU软化在RT裂解反应3-4分钟。
  6. 停止RBC裂解14毫升冰冷的BSS / FBS和在4℃降速在453×g离心5分钟。

3. B和T细胞的分离纯化

  1. B细胞的纯化
    1. 算使用血球细胞。重悬在300微升BSS / FBS高达10 8脾细胞,并加入50微升抗CD43磁珠9,10。要去除死细胞,加入30微升Annexin V的磁珠。孵育在4℃冰箱内的细胞悬浮液30分钟。
  2. 性T细胞的分离纯化
    1. 算使用血球细胞。重悬至10 8个细胞的非T细胞耗竭抗体混合物(抗CD19,B220,GR-1的生物素化抗体,TCR-γδ,CD49b,CD11c的,细胞CD11b,TER119和CD4或CD8根据目标细胞群体在200μlBSS / FBS -4,5- 200:被纯化),稀释。孵育在所述细胞悬浮液4℃冰箱中15分钟。
    2. 孵育后,加入10 mL的BSS / FBS洗涤细胞,并在4℃下降速在453×g离心5分钟。去除上清,再暂停165微升BSS / FBS细胞与30微升链霉亲和微珠15微升Annexin V的磁珠。孵育在4℃冰箱内的细胞悬浮液30分钟。
      注:为了确保即使在磁微珠标记,用微珠孵育细胞15分钟,然后通过轻敲15毫升管轻轻混合细胞悬液和步骤3.1.1期间孵育另外15分钟。 3.2.2或。
  3. 分离柱的制备细胞纯化
    1. 细胞的微珠标记中制备的未使用分离柱(步骤3.1.1。或3.2.2。)。预暖的BSS(无FBS)至RT,并用2毫升给洗并无菌平衡色谱柱。用BSS平衡后,将洗涤塔不应该被允许干燥。
      注:我们使用LSÇolumn代替推荐的LD柱的,由于其重复使用性(参见步骤3.4)。
    2. 用磁珠标记后,添加14毫升BSS / FBS洗涤细胞,并在4℃下降速在453×g离心5分钟。除去上清液并重新悬浮在1-3毫升RT BSS细胞。
    3. 附加的无菌21g的针列的前端纯化的过程中,以降低流速。加载细胞悬液到平衡柱,并通过含有纯化靶细胞收集的流动。
      注意:避免引入气泡进入而载入列。
    4. 用1毫升BSS / FBS冲洗柱子一次,并通过包含纯化的靶细胞采集流程。通过再次刷新同流列。通过在相同的15ml试管第二装载后收集的流动。
    5. 用1ml BSS / FBS洗涤柱3次,并通过含有纯化靶细胞收集的流动。此后,加5毫升BSS / FBS为thÈ柱,有柱塞,冲洗磁性标记的细胞出列到一个新的15ml试管中。
    6. 检查由流收集仪使用结合到表面纯化的B细胞或T细胞4,5抗原的抗体的细胞的纯度。
  4. 重新使用分离柱
    注:LS柱可以在不影响净化效率被重用高达4倍。
    1. 用5ml磷酸盐缓冲盐水(PBS)中,用从使用柱塞顶端蒸馏水洗5×3次洗涤柱3次。
    2. 洗用5毫升70%的乙醇柱和广泛使用空气抽头防止生锈的该列中的积聚干燥塔。
    3. 以制备用于单独的纯化实验中使用的LS柱,从下向上洗柱,使用注射器接合件5 1ml 70%乙醇。接着,用5毫升无菌PBS,从塔的顶部,随后用5毫升的PBS洗一次从底部向上的柱两次。添加2RT毫升BSS平衡柱,然后进行与标记细胞装入列。

4. CFSE标记和刺激

注:纯化的细胞可以经受多种体外体内功能性测定法。在这里,我们使用纯净的T细胞,以确定装甲运兵车5的T细胞的刺激能力。

  1. 预暖标签解决方案(PBS中0.1%FBS)至37°CFSEÇ之前加载。
    注意:使用的FBS的PBS中的低百分比的CFSE装载期间减少细胞死亡和在离心分离期间最大限度地减少细胞的损失。然而,过多的FBS可以用CFSE载荷干扰。
  2. 用标记溶液洗涤纯化的细胞两次,然后在15毫升管预热的标记溶液再悬浮为2×10 7个细胞/ ml。
  3. 制备10μM的CFSE溶液(1:500稀释的5mM CFSE原液)的预热的标记溶液。 CFSE解决方案应每次实现最佳标记新鲜配制。
  4. 加载细胞用CFSE,在37℃下添加1份细胞悬液至1份10微米的CFSE溶液在一个15毫升管中并孵育在黑暗中10分钟。为5μMCFSE的最终浓度用于标记1×10 7个细胞/ ml。
  5. 倒置该管每隔2分钟,以确保CFSE装载期间细胞的均匀的混合物。
  6. 停止反应,加入冰冷的完全RPMI介质的多个卷,且在4℃降速在453 XG 5分钟。在成功CFSE加载,将细胞沉淀将出现淡黄色。
  7. 洗涤CFSE装载的细胞再一次用冰冷的完全RPMI培养基中,并使用用于体外培养或体内刺激前在4℃降速在453×g离心5分钟。

5. 体外刺激

  1. 临用前准备刺激的2倍原液(2X刺激原液),使100微升2×刺激原液可以加入到100μl的细胞对每孔200微升的在一个96孔板的最终体积。
  2. 如果需要涂覆有刺激(IgM抗体或CD40对B细胞或CD3和CD28对于T细胞)的板,稀释在PBS中的刺激和预涂层的培养板在4℃下过夜。可替代地,将培养板可在37℃被涂布于在实验当天1小时。用PBS(不要让盘在任何时间干)洗涂板的两倍。
对于B细胞
刺激 最终浓度
的F(ab')2山羊抗小鼠IgM 0.6-2.4微克/毫升
抗小鼠CD40单克隆抗体 0.5-2微克/毫升
重组小鼠IL-4 25单位/毫升
脂多糖 0.1-10微克/毫升
(LPS)的来自大肠杆菌大肠杆菌血清型055:B5
对于T细胞
刺激 最终浓度
抗CD3(板涂层) 2-10微克/毫升
(50μl/孔涂覆)
抗CD28(板涂层) 2微克/毫升
重组IL-2 40单位/毫升
PDBu组(佛波酯) 5-50纳克/毫升
A23187(钙离子载体) 250纳克/毫升

表1:用于刺激在体外培养的淋巴细胞的刺激的浓度。

  1. 对于CFSE标记的B细胞,重新悬浮在一式三份的完全RPMI培养基和培养至3×10 6个细胞/ ml用3×10 5细胞中/孔72小时的96孔平底板。
  2. 对于CFSE标记的T细胞,再悬浮于完全RPMI培养基和培养,一式三份用0.5-3×10 5个细胞0.5-3×10 6个细胞/ ml /孔在96孔48或72小时圆底平板。

6. 在体刺激

  1. 用于体内刺激,过继转移4×10 6每只小鼠CFSE标记的T细胞(静脉内(IV)在200μlPBS中)到每个MHC匹配的受体小鼠。
    注:在这个协议中,CFSE标记的T细胞可以使用继尾静脉或眼眶注射,因为这些细胞将家里淋巴器官如脾和淋巴结转移。
  2. 挑战受体小鼠一天后的抗原。
    注意:在这个例子中,使用卵白蛋白(OVA蛋白,50微克/小鼠)作为抗原,因为OVA特异性T细胞受体(TCR)-transgenic T细胞过继转移到受者小鼠。准备OVA蛋白无菌PBS并注入100微升OVA蛋白/ PBS或PBS控制,通过皮下注射(SI),为每个收件人鼠标5。
  3. 收获并用OVA蛋白或PBS免疫接种后3天生成从淋巴器官受体小鼠的单细胞悬浮液(淋巴结和脾)。单独的淋巴结到近端淋巴结(PLN),其中包括腋窝,臂和颈浅淋巴结)和远端淋巴结(DLN),它包括肠系膜,腘,腹股沟,腰椎,和尾部淋巴结。使用适当的FACS抗体染色的细胞以检查T细胞增殖。
    注:在此CFSE细胞跟踪实验,CFSE标记的T细胞PBS注射的对照小鼠建立一个基线荧光非二viding细胞。增殖的细胞分裂,抗原刺激,CFSE标记的细胞通过测量荧光峰12,13可视化。与PBS对照,增殖的细胞分裂的次数,CFSE标记的T细胞可以被确定12,13。
  4. 通过比较细胞分裂或峰的样本之间的数字分析CFSE标记的细胞增殖数据( 图12)。
    注意:例如,CFSE标记,继转移到接收到的OVA抗原受体小鼠OVA特异性T细胞将较之PBS注射的对照小鼠5,12经历活跃增殖。此外,值得注意的是要指出,有很多方法来分析CFSE细胞增殖数据,由Hawkins和同事14所证明。

Access restricted. Please log in or start a trial to view this content.

结果

淋巴细胞的磁性细胞纯化允许用户在一段相对短的量纯化的靶细胞群。使用我们的耗尽协议中,我们能够从72.8%(前纯化)增加的CD8 T细胞的百分比(OT-I在重组活化基因-1(RAG-1)缺陷小鼠)到94.2%(纯化后; 1A)4,5。然后将这些纯化的淋巴细胞可用于下游功能测定来确定的淋巴细胞增殖和信号转导4,5。例如,我们可以研究的装甲运兵车?...

Access restricted. Please log in or start a trial to view this content.

讨论

在这个协议中,我们展示了从淋巴器官淋巴细胞净化的过程。使用磁珠分选的细胞纯化是产生可行的,高度纯化的靶细胞快速和简单的方法。

该议定书中的关键步骤

细胞活力和细胞产量

体外造血保持系细胞的活力,是确保成功的和可重复的实验,是至关重要的。化学和生物试剂,次优实验条件或切除器官的不适当...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors have nothing to disclose.

致谢

这项研究是由教育部,新加坡教育部(ACRF Tier1-RG40 / 13层2-MOE2013-T2-2-038)的支持。这份手稿是由来自Obrizus通信艾米沙利文编辑。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
Materials
RPMI 1640 (without L-Glutamine)Gibco31870025
Fetal Bovine SerumHeat inactivated 
L-glutamineGibco25030024
Penicillin/StreptomycinGibco15140114
2-mercaptoethanolGibco21985023
Anti-CD43 magnetic microbeadsMiltenyi Biotec130-049-801Mix well prior use
Streptavidin microbeadsMiltenyi Biotec130-048-101Mix well prior use
Anti-Annexin V magnetic beadsMiltenyi Biotec130-090-201Mix well prior use
MACS LD Miltenyi Biotec130-042-901
96-well U-bottom sterile culture plateGreiner Bio-one650180
96-well F-bottom sterile culture plateGreiner Bio-one655180
100 μm cell strainer meshTo sterilize using UV radiation prior use
0.2 μm  sterile disposable filter unitsNalgene567-0020Can be substituted with any sterile filter device
CellTrace VioletInvitrogenC34557CTV for short; alternative to CFSE
CellTrace YellowInvitrogenC34567CTY for short; alternative to CFSE
CellTrace Far RedInvitrogenC34564CTFR for short; alternative to CFSE
Cell Proliferation Dye eFluor 670eBioscience65-0840CPD670 for short; alternative to CFSE
PKH26Sigma AldrichPKH26GLPKH26, alternative to CFSE
NameCompanyCatalog NumberComments
Chemicals
DextroseSigma AldrichG7021
Potassium phosphate monobasicSigma AldrichP5655
Sodium phosphate dibasicSigma AldrichS5136
Phenol RedSigma AldrichP0290
Calcium chloride dihydrateSigma AldrichC7902
Potassium chlorideSigma AldrichP5405
Sodium chlorideMerck MilliporeS7653Can use from other sources
Magnesium chloride hexahydrateSigma AldrichM2393
Magnesium sulfateSigma AldrichM2643
Ammonium chlorideSigma AldrichA9434
Tris-base
Dimethyl SulfoxideSigma Aldrich D8418
(5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE)Molecular ProbesC-1157Reconstitute in DMSO
Phorbol 12,13-dibutyrate (PBDU, Phorbol ester)Sigma AldrichP1269
A23187 (Calcium ionophore)Sigma AldrichC7522
NameCompanyCatalog NumberComments
Antibodies and recombinant protein
CD11b biotin (clone m1/70)Biolegend101204T cell depletion cocktail
CD11c biotin (clone N418)Biolegend117304T cell depletion cocktail
Gr-1 biotin (clone RB6-8C5)Biolegend108404T cell depletion cocktail
Ter119 biotin (clone Ter119)Biolegend116204T cell depletion cocktail
TCR-γδ biotin (clone GL-3)Biolegend118103T cell depletion cocktail
CD19 biotin (clone 6D5)Biolegend115504T cell depletion cocktail
B220 biotin (clone RA3-6B2)Biolegend103204T cell depletion cocktail
CD49b biotin (clone DX5)Biolegend108904T cell depletion cocktail
CD4 biotin (clone GK1.5)Biolegend100404T cell depletion cocktail
CD8 biotin (clone 53-6.7)Biolegend100704T cell depletion cocktail
F(ab’)2 goat anti-mouse IgM (plate coated)Jackson ImmunoResearch 115-006-07550 µl/well for coating (96-well)
Anti-mouse CD40 mAb (plate coated)Pharmingen 55372250 µl/well for coating (96-well)
Recombinant IL-4ProSpec Cyt-282
LPS from E. coli Serotype 055:B5Sigma AldrichL-4005
Anti-CD3 (clone clone OKT3) (plate coated)eBioscience 16-0037-8550 µl/well for coating (96-well)
Anti-CD28 (clone clone 37.51) (plate coated)eBioscience 16-0281-8550 µl/well for coating (96-well)
Recombinant IL-2ProSpecCyt-370
Albumin from chicken egg white, OvalbuminSigma AldrichA7641

参考文献

  1. Nikolich-Žugich, J., Slifka, M. K., Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4 (2), 123-132 (2004).
  2. LeBien, T. W., Tedder, T. F. B lymphocytes: how they develop and function. Blood. 112 (5), 1570-1580 (2008).
  3. Brownlie, R., Zamoyska, R. T cell receptor signaling networks: branched, diversified and bound. Nat. Rev. Immunol. 13 (4), 257-269 (2013).
  4. Neo, W. H., Lim, J. F., Grumont, R., Gerondakis, S., Su, I. C-rel regulates ezh2 expression in activated lymphocytes and malignant lymphoid cells. J. Biol. Chem. 289 (46), 31693-31707 (2014).
  5. Gunawan, M., et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol. 16 (5), 505-516 (2015).
  6. Lyons, A. B., Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods. 171 (1), 131-137 (1994).
  7. Cabatingan, M. S., Schmidt, M. R., Sen, R., Woodland, R. T. Naïve B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J. Immunol. 169 (12), 6795-6805 (2002).
  8. Bedoya, S. K., Wilson, T. D., Collins, E. L., Lau, K., Larkin, J. Isolation and Th17 differentiation of naïve CD4 lymphocytes. J. Vis. Exp. (79), e50765(2013).
  9. Su, I., et al. Ezh2 controls B cell development through histone h3 methylation and Igh rearrangement. Nat. Immunol. 4 (2), 124-131 (2003).
  10. Mecklenbräuker, I., Saijo, K., Zheng, N., Leitges, M., Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature. 416 (6883), 860-865 (2002).
  11. Rush, J. S., Hodgkin, P. D. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol. 31 (4), 1150-1159 (2001).
  12. Quah, B. J. C., Warren, H. S., Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2 (9), 2049-2056 (2007).
  13. Quah, B. J. C., Parish, C. R. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J. Immunol. Methods. 379 (1-2), 1-14 (2012).
  14. Hawkins, E. D., Hommel, M., Turner, M. L., Battye, F. L., Markham, J. F., Hodgkin, P. D. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protoc. 2 (9), 2057-2067 (2007).
  15. Tomlinson, M. J., Tomlinson, S., Yang, X. B., Kirkham, J. Cell separation: Terminology and practical considerations. J. Tissue Eng. 4 (1), 1-14 (2013).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

116 B T CFSE

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。