JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Lymphocytes are the major players in adaptive immune responses. Here, we present a lymphocyte purification protocol to determine the physiological functions of the desired molecules in lymphocyte activation in vitro and in vivo. The described experimental procedures are suitable for comparing functional capacities between control and genetically modified lymphocytes.

Streszczenie

B and T cells, with their extremely diverse antigen-receptor repertoires, have the ability to mount specific immune responses against almost any invading pathogen1,2. Understandably, such intricate abilities are controlled by a large number of molecules involved in various cellular processes to ensure timely and spatially regulated immune responses3. Here, we describe experimental procedures that allow rapid isolation of highly purified murine lymphocytes using magnetic cell sorting technology. The resulting purified lymphocytes can then be subjected to various in vitro or in vivo functional assays, such as the determination of lymphocyte signaling capacity upon stimulation by immunoblotting4 and the investigation of proliferative abilities by 3H-thymidine incorporation or carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling5-7. In addition to comparing the functional capacities of control and genetically modified lymphocytes, we can also determine the T cell stimulatory capacity of antigen-presenting cells (APCs) in vivo, as shown in our representative results using transplanted CFSE-labeled OT-I T cells.

Wprowadzenie

Mature lymphocytes generally exist in the resting state if there is no pre-existing infection or inflammation in the individual. Therefore, it is important to retain the naïve status of lymphocytes during the isolation process before performing in vitro or in vivo functional assays. The key to ensuring consistent and reproducible results is to limit any unnecessary manipulation of the cells.

Magnetic cell sorting utilizes antibodies and microbeads to label cells so as to enrich the cell population of interest. With this approach, there are two purification strategies: positive enrichment and negative depletion. Positive enrichment enriches the cell population of interest using an antibody that binds to the target cells. Negative depletion, on the other hand, depletes non-target cells, leaving the cell population of interest. In our lab, we prefer negative depletion to positive enrichment because the binding of antibodies to the target cells could potentially alter cell features and behavior. In fact, many established cell surface markers suitable for the isolation of a particular cell population are also functional receptors.

Magnetic cell sorting not only yields highly pure populations of viable target cells, it is also less time-consuming and avoids the cellular stress induced by high-pressure flow used in fluorescence-activated cell sorting (FACS). By labeling the unwanted cell populations and depleting them using a magnetic separation column, we are able to perform rapid cell isolation without compromising the viability of the target cell population. In this protocol, we demonstrate the use of negative depletion strategies to purify naïve B cells or T cells.

Access restricted. Please log in or start a trial to view this content.

Protokół

All mice are bred and maintained under specific pathogen-free conditions and all mouse protocols are conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee.

1. Preparation of Buffers and Reagents

  1. Prepare complete Roswell Park Memorial Institute (RPMI) medium (10% heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine, penicillin (100 IU/ml)/streptomycin (100 µg/ml), 55 µM 2-mercaptoethanol).
  2. Prepare 20x Balanced Salt Solution (BSS) Stock 1 and Stock 2, Separately.
    1. Prepare 20x BSS stock 1 (111 mM dextrose, 8.8 mM potassium phosphate, 26.7 mM sodium phosphate dibasic in 1 L sterile water) and add 40 ml 0.5% Phenol Red to 20x BSS stock 1 before final volume adjustment. Sterile filter using 0.2 µm filter before storing at 4 °C.
    2. Prepare 20x BSS stock 2 (25.8 mM calcium chloride dihydrate, 107 mM potassium chloride, 2.73 M sodium chloride, 19.6 mM magnesium chloride hexahydrate, 16.6 mM magnesium sulfate in 1 L sterile water). Sterile filter using 0.2 µm filter before storing at 4 °C.
    3. To prepare 1x BSS for experimental use, dilute 50 ml BSS stock 1 and 50 ml BSS stock 2, separately, in 400 ml sterile water each. Combine both diluted solutions, adjust to pH 7, and add 20 ml FBS (2%). Top up to 1 L using sterile water and sterile filter using 0.2 µm filter.
      NOTE: BSS stock solutions should be prepared separately because the mixing of concentrated BSS stocks directly could result in precipitation.
  3. Red Blood Cell (RBC) Lysis Buffer
    1. To prepare RBC lysis buffer, mix 9 parts stock ammonium chloride (155 mM ammonium chloride in sterile water) to 1 part stock Tris-base (130 mM Tris(hydroxymethyl)aminomethane in sterile water, pH 7.65) before use.
      NOTE: Store sterile stock solutions of ammonium chloride and Tris-base at 4 °C. Prepare lysis buffer fresh to ensure efficient lysis of RBCs.

2. Generation of Lymphocyte Suspension from Spleen or Lymph Nodes

NOTE: It is important to prepare all reagents and equipment required for the experiment before mouse euthanasia and to generate single cell suspensions of lymphocytes as soon as possible to maintain high cell viabilities.

  1. Euthanize experimental mouse by cervical dislocation or CO2 asphyxiation.
    NOTE: From this step onwards, all experimental procedures should be performed aseptically.
  2. Dip the entire mouse into 70% ethanol before making any incisions. Remove the spleen and lymph nodes aseptically8, and place them in separate 15 ml tubes containing 5 ml ice-cold RPMI/FBS (RPMI with 2% FBS) or BSS/FBS (from step 1.2.3).
    NOTE: Since BSS prevents efficient RBC lysis, use RPMI for the preparation of the splenic cell suspension and switch to BSS after RBC lysis.
  3. To generate a single cell suspension from spleen or lymph nodes, place the organ(s) in between two pieces of sterile 100 µm cell strainer mesh in a petri dish containing 2 ml ice-cold RPMI/FBS or BSS/FBS. Using the plunger of a 1 ml syringe, mash the organ(s) until it has been torn into very fine parts.
  4. Transfer the cell suspension to a 15 ml tube and wash the cell strainer mesh with ice-cold RPMI/FBS or BSS/FBS. Collect the remaining cell suspension, add it to the same 15-ml tube, and spin down at 453 x g for 5 min at 4 °C. Remove the supernatant.
    NOTE: Re-suspend the pelleted cells by flicking the tube with fingers before adding RBC lysis buffer or medium in the subsequent steps.
  5. Prepare room temperature (RT) RBC lysis buffer during centrifugation of the cell suspension (see step 1.3.). After pelleting the cells and removing the supernatant, re-suspend the cells with 1 ml RBC lysis buffer for every 108 cells. Incubate the lysis reaction at RT for 3-4 min.
  6. Stop RBC lysis with 14 ml ice-cold BSS/FBS and spin down at 453 x g for 5 min at 4 °C.

3. Purification of B and T Cells

  1. Purification of B Cells
    1. Count the cells using a hemocytometer. Re-suspend up to 108 splenic cells in 300 µl BSS/FBS and add 50 µl anti-CD43 magnetic microbeads9,10. To remove dead cells, add 30 µl Annexin V magnetic beads. Incubate the cell suspension in a 4 °C refrigerator for 30 min.
  2. Purification of T Cells
    1. Count the cells using a hemocytometer. Re-suspend up to 108 cells in non-T cell depletion antibody cocktail (biotinylated antibodies against CD19, B220, Gr-1, TCR-γδ, CD49b, CD11c, CD11b, Ter119 and CD4 or CD8 depending on the target cell population to be purified), diluted 1:200 in 200 µl BSS/FBS4,5. Incubate the cell suspension in a 4 °C refrigerator for 15 min.
    2. After incubation, add 10 ml BSS/FBS to wash the cells and spin down at 453 x g for 5 min at 4 °C. Remove the supernatant and re-suspend the cells in 165 µl BSS/FBS with 30 µl streptavidin microbeads and 15 µl Annexin V magnetic beads. Incubate the cell suspension in a 4 °C refrigerator for 30 min.
      NOTE: To ensure even labeling with the magnetic microbeads, incubate the cells with microbeads for 15 min, then mix the cell suspension gently by tapping the 15 ml tube and incubate another 15 min during step 3.1.1. or 3.2.2.
  3. Preparation of Separation Column for Cell Purification
    1. Prepare an unused separation column during microbead labeling of the cells (step 3.1.1. or 3.2.2.). Pre-warm BSS (without FBS) to RT and use 2 ml to wash and equilibrate the column aseptically. After equilibration with BSS, the washed column should not be allowed to dry out.
      NOTE: We use the LS column instead of the recommended LD column due to its re-usability (see step 3.4.).
    2. After labeling with the magnetic beads, add 14 ml BSS/FBS to wash the cells and spin down at 453 x g for 5 min at 4 °C. Remove the supernatant and re-suspend the cells in 1-3 ml RT BSS.
    3. Attach a sterile 21 G needle to the tip of the column to reduce the flow rate during the process of purification. Load the cell suspension onto the equilibrated column and collect the flow through containing the purified target cells.
      NOTE: Avoid introducing bubbles into the column while loading.
    4. Wash the column once with 1 ml BSS/FBS and collect the flow through containing the purified target cells. Reload the column with the flow through once again. Collect the flow through after the second loading in the same 15 ml tube.
    5. Wash the column 3 times with 1 ml BSS/FBS and collect the flow through containing the purified target cells. Thereafter, add 5 ml BSS/FBS to the column and, with a plunger, flush the magnetically labeled cells out of the column into a new 15 ml tube.
    6. Check the purity of the cells collected by flow cytometry using antibodies that bind to surface antigens of purified B or T cells4,5.
  4. Re-using the Separation Column
    NOTE: The LS column can be reused up to 4 times without affecting purification efficiency.
    1. Wash the column 3 times with 5 ml phosphate buffered saline (PBS) and 3 times with 5 ml distilled water from the top using the plunger.
    2. Wash the column with 5 ml 70% ethanol and dry the column extensively using an air tap to prevent the buildup of rust in the column.
    3. To prepare a used LS column for a separate purification experiment, wash the column from the bottom up with 5 ml 70% ethanol using the syringe adaptor. Next, wash the column from the bottom up twice with 5 ml sterile PBS, followed by 5 ml PBS once from the top of the column. Add 2 ml RT BSS to equilibrate the column and then proceed to loading the column with labeled cells.

4. CFSE Labeling and Stimulation

NOTE: Purified cells can be subjected to a variety of in vitro and in vivo functional assays. Here, we use purified T cells to determine the T cell stimulation capability of APCs5.

  1. Pre-warm labeling solution (0.1% FBS in PBS) to 37 °C prior to CFSE loading.
    NOTE: Using a low percentage of FBS in PBS reduces cell death during CFSE loading and minimizes cell loss during centrifugation. However, too much FBS can interfere with CFSE loading.
  2. Wash purified cells twice with labeling solution, then re-suspended at 2 x 107 cells/ml in pre-warmed labeling solution in a 15 ml tube.
  3. Prepare 10 µM CFSE solution (1:500 dilution of 5 mM CFSE stock solution) in pre-warmed labeling solution. CFSE solution should be freshly prepared each time to achieve optimal labeling.
  4. To load cells with CFSE, add 1 part cell suspension to 1 part 10 µM CFSE solution in a 15-ml tube and incubate in the dark for 10 min at 37 °C. A final concentration of 5 µM CFSE is used to label 1 x 107 cells/ml.
  5. Invert the tube every 2 min to ensure a homogenous mixture of cells during CFSE loading.
  6. To stop the reaction, add several volumes of ice-cold complete RPMI medium and spin down at 453 x g for 5 min at 4 °C. Upon successful CFSE loading, the cell pellet will appear yellowish.
  7. Wash CFSE loaded cells one more time with ice-cold complete RPMI medium and spin down at 453 x g for 5 min at 4 °C before using for in vitro culturing or in vivo stimulation.

5. In Vitro Stimulation

  1. Prepare a 2x stock solution of stimuli (2x stimuli stock solution) immediately before use so that 100 µl of 2x stimuli stock solution can be added to 100 µl of cells to a final volume of 200 µl per well in a 96-well plate.
  2. If a plate coated with stimuli (IgM or CD40 for B cells or CD3 and CD28 for T cells) is required, dilute the stimuli in PBS and pre-coat the culture plate at 4 °C overnight. Alternatively, the culture plate can be coated at 37 °C for 1 hr on the day of the experiment. Wash the coated plate twice with PBS (Do not allow the plate to dry out at any time).
For B cells 
Stimuli Final concentration
F(ab’)2 goat anti-mouse IgM0.6-2.4 µg/ml
Anti-mouse CD40 mAb0.5-2 µg/ml
Recombinant mouse IL-425 U/ml 
Lipopolysaccharide0.1-10 µg/ml
(LPS) from E. coli Serotype 055:B5
For T cells 
Stimuli Final concentration
Anti-CD3 (plate coated)2-10 µg /ml
(50 µl/well for coating)
Anti-CD28 (plate coated) 2 µg/ml
Recombinant IL-240 U/ml
PDBu (Phorbol ester)5-50 ng/ml
A23187 (Calcium ionophore)250 ng/ml

Table 1: Concentrations of stimuli used to stimulate lymphocytes in in vitro culture.

  1. For CFSE-labeled B cells, re-suspend to 3 x 106 cells/ml in complete RPMI medium and culture in triplicate with 3 x 105 cells/well in 96-well flat bottom plates for 72 hr.
  2. For CFSE-labeled T cells, re-suspend to 0.5-3 x 106 cells/ml in complete RPMI medium and culture in triplicate with 0.5-3 x 105 cells/well in 96-well round bottom plates for 48 or 72 hr.

6. In Vivo Stimulation

  1. For in vivo stimulation, adoptively transfer 4 x 106 CFSE-labeled T cells per mouse (intravenously (i.v.) in 200 µl PBS) into each MHC-matched recipient mouse.
    NOTE: In this protocol, CFSE-labeled T cells can be adoptively transferred using tail vein or retro-orbital injection as these cells will home to lymphoid organs such as the spleen and lymph nodes.
  2. Challenge the recipient mice one day later with the antigen.
    NOTE: In this example, we use ovalbumin (OVA protein, 50 µg/mouse) as the antigen because OVA-specific, T cell receptor (TCR)-transgenic T cells were adoptively transferred into recipient mice. Prepare OVA protein in sterile PBS and inject 100 µl of OVA protein/PBS or PBS control, via subcutaneous injection (s.i.), into each recipient mouse5.
  3. Harvest and generate single cell suspensions from lymphoid organs (lymph nodes and spleens) of recipient mice 3 days after immunization with OVA protein or PBS. Separate lymph nodes into proximal lymph nodes (pLN), which includes axillary, brachial and superficial cervical lymph nodes) and distal lymph nodes (dLN), which includes mesenteric, popliteal, inguinal, lumbar, and caudal lymph nodes. Stain cells using the appropriate FACS antibodies to check for T cell proliferation.
    NOTE: In this CFSE cell tracking experiment, CFSE-labeled T cells from PBS-injected control mice establish a baseline fluorescence for non-dividing cells. Cell divisions of proliferating, antigen-stimulated, CFSE-labeled cells are visualized by measuring fluorescence peaks12,13. With the PBS control, the number of cell divisions of proliferating, CFSE-labeled T cells can be determined12,13.
  4. Analyze the CFSE-labeled cell proliferation data by comparing the number of cell divisions or peaks between samples (Figures 1 and 2).
    NOTE: For example, CFSE-labeled, OVA-specific T cells adoptively transferred into recipient mice receiving the OVA antigen will undergo active proliferation compared to the PBS-injected control mice5,12. Furthermore, it is noteworthy to point out that there are many ways to analyze CFSE cell proliferation data, as demonstrated by Hawkins and colleagues14.

Access restricted. Please log in or start a trial to view this content.

Wyniki

Magnetic cell purification of lymphocytes allows users to purify a target cell population in a relatively short amount of time. Using our depletion protocol, we were able to increase the percentage of CD8 T cells (OT-I in recombination-activating gene-1 (RAG-1)-deficient mice) from 72.8% (before purification) to 94.2% (after purification; Figure 1A)4,5. These purified lymphocytes can then be used for downstream functional assays to determine lymphocyte prolifer...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

In this protocol, we demonstrate a procedure for purifying lymphocytes from lymphoid organs. Cell purification using magnetic bead sorting is a fast and simple method that yields viable, highly purified target cells.

Critical Steps within the Protocol

Cell viability and cell yield

Maintaining viability of hematopoietic lineage cells in vitro is critical to ensuring successful and reproducible experiments. Chemical ...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The study is supported by the Ministry of Education, Singapore (AcRF Tier1-RG40/13 and Tier2-MOE2013-T2-2-038). The manuscript was edited by Amy Sullivan from Obrizus Communications.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
Materials
RPMI 1640 (without L-Glutamine)Gibco31870025
Fetal Bovine SerumHeat inactivated 
L-glutamineGibco25030024
Penicillin/StreptomycinGibco15140114
2-mercaptoethanolGibco21985023
Anti-CD43 magnetic microbeadsMiltenyi Biotec130-049-801Mix well prior use
Streptavidin microbeadsMiltenyi Biotec130-048-101Mix well prior use
Anti-Annexin V magnetic beadsMiltenyi Biotec130-090-201Mix well prior use
MACS LD Miltenyi Biotec130-042-901
96-well U-bottom sterile culture plateGreiner Bio-one650180
96-well F-bottom sterile culture plateGreiner Bio-one655180
100 μm cell strainer meshTo sterilize using UV radiation prior use
0.2 μm  sterile disposable filter unitsNalgene567-0020Can be substituted with any sterile filter device
CellTrace VioletInvitrogenC34557CTV for short; alternative to CFSE
CellTrace YellowInvitrogenC34567CTY for short; alternative to CFSE
CellTrace Far RedInvitrogenC34564CTFR for short; alternative to CFSE
Cell Proliferation Dye eFluor 670eBioscience65-0840CPD670 for short; alternative to CFSE
PKH26Sigma AldrichPKH26GLPKH26, alternative to CFSE
NameCompanyCatalog NumberComments
Chemicals
DextroseSigma AldrichG7021
Potassium phosphate monobasicSigma AldrichP5655
Sodium phosphate dibasicSigma AldrichS5136
Phenol RedSigma AldrichP0290
Calcium chloride dihydrateSigma AldrichC7902
Potassium chlorideSigma AldrichP5405
Sodium chlorideMerck MilliporeS7653Can use from other sources
Magnesium chloride hexahydrateSigma AldrichM2393
Magnesium sulfateSigma AldrichM2643
Ammonium chlorideSigma AldrichA9434
Tris-base
Dimethyl SulfoxideSigma Aldrich D8418
(5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE)Molecular ProbesC-1157Reconstitute in DMSO
Phorbol 12,13-dibutyrate (PBDU, Phorbol ester)Sigma AldrichP1269
A23187 (Calcium ionophore)Sigma AldrichC7522
NameCompanyCatalog NumberComments
Antibodies and recombinant protein
CD11b biotin (clone m1/70)Biolegend101204T cell depletion cocktail
CD11c biotin (clone N418)Biolegend117304T cell depletion cocktail
Gr-1 biotin (clone RB6-8C5)Biolegend108404T cell depletion cocktail
Ter119 biotin (clone Ter119)Biolegend116204T cell depletion cocktail
TCR-γδ biotin (clone GL-3)Biolegend118103T cell depletion cocktail
CD19 biotin (clone 6D5)Biolegend115504T cell depletion cocktail
B220 biotin (clone RA3-6B2)Biolegend103204T cell depletion cocktail
CD49b biotin (clone DX5)Biolegend108904T cell depletion cocktail
CD4 biotin (clone GK1.5)Biolegend100404T cell depletion cocktail
CD8 biotin (clone 53-6.7)Biolegend100704T cell depletion cocktail
F(ab’)2 goat anti-mouse IgM (plate coated)Jackson ImmunoResearch 115-006-07550 µl/well for coating (96-well)
Anti-mouse CD40 mAb (plate coated)Pharmingen 55372250 µl/well for coating (96-well)
Recombinant IL-4ProSpec Cyt-282
LPS from E. coli Serotype 055:B5Sigma AldrichL-4005
Anti-CD3 (clone clone OKT3) (plate coated)eBioscience 16-0037-8550 µl/well for coating (96-well)
Anti-CD28 (clone clone 37.51) (plate coated)eBioscience 16-0281-8550 µl/well for coating (96-well)
Recombinant IL-2ProSpecCyt-370
Albumin from chicken egg white, OvalbuminSigma AldrichA7641

Odniesienia

  1. Nikolich-Žugich, J., Slifka, M. K., Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4 (2), 123-132 (2004).
  2. LeBien, T. W., Tedder, T. F. B lymphocytes: how they develop and function. Blood. 112 (5), 1570-1580 (2008).
  3. Brownlie, R., Zamoyska, R. T cell receptor signaling networks: branched, diversified and bound. Nat. Rev. Immunol. 13 (4), 257-269 (2013).
  4. Neo, W. H., Lim, J. F., Grumont, R., Gerondakis, S., Su, I. C-rel regulates ezh2 expression in activated lymphocytes and malignant lymphoid cells. J. Biol. Chem. 289 (46), 31693-31707 (2014).
  5. Gunawan, M., et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol. 16 (5), 505-516 (2015).
  6. Lyons, A. B., Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods. 171 (1), 131-137 (1994).
  7. Cabatingan, M. S., Schmidt, M. R., Sen, R., Woodland, R. T. Naïve B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J. Immunol. 169 (12), 6795-6805 (2002).
  8. Bedoya, S. K., Wilson, T. D., Collins, E. L., Lau, K., Larkin, J. Isolation and Th17 differentiation of naïve CD4 lymphocytes. J. Vis. Exp. (79), e50765(2013).
  9. Su, I., et al. Ezh2 controls B cell development through histone h3 methylation and Igh rearrangement. Nat. Immunol. 4 (2), 124-131 (2003).
  10. Mecklenbräuker, I., Saijo, K., Zheng, N., Leitges, M., Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature. 416 (6883), 860-865 (2002).
  11. Rush, J. S., Hodgkin, P. D. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol. 31 (4), 1150-1159 (2001).
  12. Quah, B. J. C., Warren, H. S., Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2 (9), 2049-2056 (2007).
  13. Quah, B. J. C., Parish, C. R. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J. Immunol. Methods. 379 (1-2), 1-14 (2012).
  14. Hawkins, E. D., Hommel, M., Turner, M. L., Battye, F. L., Markham, J. F., Hodgkin, P. D. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protoc. 2 (9), 2057-2067 (2007).
  15. Tomlinson, M. J., Tomlinson, S., Yang, X. B., Kirkham, J. Cell separation: Terminology and practical considerations. J. Tissue Eng. 4 (1), 1-14 (2013).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Lymphocyte IsolationMurine LymphocytesB Cell PurificationMagnetic Bead SeparationAnnexin VCell LabelingFlow CytometryCell PurityImmunologyMolecular Biology

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone