Method Article
本文的目标是提供一种标准化的方法,诱导人类肝祖细胞与多能干细胞的分化。这种程序的开发与即用媒体配方为用户提供了一个方便的系统,以产生人类肝细胞的生物医学研究和翻译。
肝病是一个不断升级的全球健康问题。虽然肝移植是一种有效的治疗方式,但由于供体器官供应不足,患者死亡率有所上升。器官短缺也影响人类肝细胞用于基础研究和临床的日常供应。因此,开发人类肝祖细胞的可再生来源是可取的,也是本研究的目标。为了能够大规模有效地生成和部署人类肝脏祖传,开发了可重复的肝祖分化系统。该协议有助于使用一系列细胞培养皿格式的用户之间的实验可重复性,并允许使用人类胚胎和诱导多能干细胞系进行区分。这些是现有分化系统的重要优势,将加强基础研究,并可能为临床产品开发铺平道路。
肝病是一个全球性的健康挑战,每年在全球造成约200万人死亡。虽然存在许多模型系统来研究肝病和临床干预,但细胞系统常规使用受到重大缺陷的限制(供审查见Szkolnicka等人)。先进的人类多能干细胞(hPSC)培养和体细胞分化方法代表了为临床3、4开发基础生物医学研究和分化细胞可再生能源的有前途的技术。
迄今为止,肝细胞分化的多个协议已经开发出5,6,7,8。这些协议试图利用小分子和生长因子9,10的组合来重建人类肝脏发育的各个方面。大多数协议包括一个循序渐进的分化过程,其中 hPSC 被准备为确定内皮,然后是肝祖体规范 11,12,13,并以 HLC 规范结束。这些协议产生的HLC显示胎儿和成人表型的混合物。这包括α胎儿蛋白(法新社)的表达,如肝细胞标记,如HNF4+和白蛋白(ALB),以及药物代谢能力14,15,16。在实验室之间,HLC 的差异可能有所不同:因此,制定标准化协议是必要的。这将使研究人员能够有效地生成和应用干细胞衍生的HLC大规模的基础和临床研究。
开发了一种肝祖分化系统,该系统可以使用易于遵循的指南应用于人类胚胎和诱导多能干细胞系。这个过程产生异质种群的肝祖体在不同的培养皿格式,从细胞培养瓶到96井板。提供以下协议,以24和96井的形式产生干细胞衍生肝祖。
下面介绍的协议中使用的细胞密度分别指定为 24 井和 96 井板的一口井(参见 表 1)。不同细胞培养板格式和细胞线需要优化起始单元格编号。建议启动细胞密度协议优化是2×105 细胞/厘米2。对于密度优化,可以通过一次添加 50,000 个单元格/cm2 ±来测试多个单元格密度。
1. 层压素-521上的人类多能干细胞(hPSC)维护
2. 拉米宁-521多井制备和hPSC播种的差异化
注:对于未在 LN-521(例如母体或纤维素)上维护的 hPSC,在传递前将 hPSC 拆分为 LN-521 和文化 1 周,并引起差异化,以提高流程 15、17、18 的效率。
3. 将 hpscs 区分为层压素 - 521 上的肝祖体
4. 层压素-521上hPSC产生的肝祖代分化培养物的特征
5. 免疫细胞化学和图像采集
肝祖代区分从hESC (H9) 和 hiPSC (P106) 线是按照图 2中描述的步向协议进行的。在这里,多能干细胞作为单细胞在分化开始前被播种到LN-521涂层板中。细胞汇流是强健且可重复的分化的关键。一旦实现了正确的汇流(图2),就会开始分化。在第 5 天,通过 Sox17 表达评估了明确的内皮规范。在这两个细胞系中,Sox17分别以80%±0.5%和87.8%±H9和P106的SEM(图3)表示强烈。在第10天,肝祖宗展示了一个鹅卵石状的形态(图2)。此外,还评估了肝祖体规格为HNF4+、法新社、ALB和细胞克哈拉汀-19(CK19)表达,以及法新社和阿尔布蛋白分泌10、15、22(图4)。H9 和 P106 肝祖传培养都表示胎儿肝标记,如 HNF4+ (91% ± 0.5% 和 90% ± 0.2%), 法新社(89.7%±1.8%和86%±1.2%),CK19(78.5%±3.2%和83.6±1.8%)(图4)。法新社分泌在第10天检测到两个细胞系(32.4±1.6和47.8±5.9 ng/mL/mg/mg/24h)(图5)。白蛋白合成在较低水平(30.7%±1.8%和27.2%±1.1%)(图4),未通过ELISA(图5)检测到。
该协议允许将肝祖体的标准化生产从24口井增加到96口井板。采用半自动管道从H9和P106细胞系生产96个肝祖板,如前所述17。细胞数变异性和肝祖分化效率通过 HNF4+ 表达的量化来评估。细胞分割是使用高含量成像仪器(图1)通过免疫荧光进行蛋白质定量的。在第10天,肝祖细胞在行间没有显著变异,H9和P106的HNF4+阳性细胞每井>94%为HNF4+阳性细胞(图6)。
图1:细胞分割管线概述。(A ) 使用原始图像,(B )核染色用于核分割。(C) 根据形状和大小执行核分割质量控制步骤,仅量化清晰分割的核。(D) 在此之后,正HNF4+染色核被量化。(E) 最后,采用基于强度的阈值来识别 HNF4+ 表达细胞。在C和E中,绿色核代表选定的细胞,洋红色核表示废弃细胞。缩放栏 = 50 μm.请单击此处查看此图的较大版本。
图2:肝祖代分化与肝 祖分化协议的示意图表示。(B) 代表图像,突出分化过程中的形态变化。在第 0 天 (D0), hpscs 提出了一个包装的单层细胞。在此之后,hPSC 在第 5 天 (D5) 被准备成最终的内皮。随后,第10天(D10)出现肝祖分化。肝祖器显示了一个鹅卵石状的细胞形态。 缩放栏 = 75 μm. 请单击此处查看此图的较大版本。
图3:确定内皮规范的特征。在第5天,细胞被染色为Six17,一个明确的内皮标记。Sox17阳性细胞的百分比为80±H9为0.5%,P106为87.8±0.5%。百分比量化基于每口油井有6个视野的10口独立油井。数据显示为 Sem. 规模栏的平均± = 50 μm。请单击此处查看此图的较大版本。
图4:肝祖特征。 在第10天,肝祖传被染色肝标记(A) HNF4 +,(B) 法新社, 和(C) ALB.H9的正细胞比例分别为91%±0.4%、89.7%±1.8%和30.7%,±1.8%的HNF4+、法新社和阿尔布。对于P106,正细胞的百分比分别为90%±0.2%、86%+/-1.2%和27.2%,±1.1%的HNF4+、法新社和阿尔布。(D) 通过CK19表达评估胆囊细胞血统潜力:H9衍生肝祖细胞表示78.5%±3.2%CK19阳性细胞,而83.6%±1.8%的CK19阳性细胞被观察到P106肝祖细胞。免疫球蛋白G (IgG) 染色用作染色控制。百分比量化基于每口油井有6个视野的10口独立油井。数据显示为 Sem. 规模栏的平均± = 50 μm。 请单击此处查看此图的较大版本。
图5:肝祖蛋白分泌分析。 在H9和P109的第10天,在肝祖文化中分析了α胎儿蛋白(法新社)和白蛋白(ALB)的分泌。这些数据代表三种生物复制品,误差条代表SD。 分泌的蛋白质从24h培养介质中量化为每毫克蛋白质每mL分泌蛋白质的纳米克,n = 3;ND = 未检测到。 请单击此处查看此图的较大版本。
图6:96井板井对井变的评价。 (A) 可视化 96 井板视图的 H9 衍生肝祖体沾染 HNF4+ 。(B) HNF4+ 阳性细胞的量化。每排井的平均细胞数,从每口井的六个视图领域量化。整个板的平均细胞数为94.81%±每口井0.22个SEM HNF4+阳性细胞。油井之间没有发现统计学上显著的差异。(C) 可视化96井板视图的P106衍生肝祖体沾染HNF4+。(D) HNF4+ 阳性细胞的量化。每排井的平均细胞数,从每口油井的六个视图领域进行量化。整个板的平均细胞数为97.7%±每口井0.57个SEM HNF4+阳性细胞。行之间没有观察到统计学上显著的差异。H12 被用作免疫球蛋白 G (IgG) 染色控制。秤杆 = 1 毫米。采用了采用了采用图基事后统计测试的单向 ANOVA。 请单击此处查看此图的较大版本。
板格式 | 表面积 (cm2) | 每厘米细胞 | 每口井的总细胞 | 分配体积 (mL) | 细胞浓度(细胞/毫升) |
24 井板 | 1.9 | 210526 | 400000 | 0.5 | 800000 |
96井板 | 0.32 | 187500 | 60000 | 0.05 | 1200000 |
表1:本协议中使用的 hPSC 电池线不同板格式的推荐细胞密度。
大规模地从多能干细胞中产生人类肝祖细胞,可能是尸体衍生材料的有希望的替代品。协议标准化和可重复性是确保生物医学研究的技术翻译和影响的关键。为了解决这个问题,以前的工作重点是开发一个步骤分化协议从hESC和iPSC使用定义的添加剂和矩阵15,23,24,25,26,27,28。通过这样做,肝细胞表型和可重复性得到了改善,使分化过程的半自动化。所呈现的系统通过与现成的细胞培养介质和方便的肝细胞分化系统的结合而得到加强。
此前,多能细胞密度在分化方案开始前被强调为实现肝祖细胞同质种群的关键变量26。利用这个更精细的程序,可以使用一系列启动细胞密度(表1)逐步产生大量的干细胞衍生肝祖。在第5天,最终的内皮诱导被Six17染色(图3)验证。通过测试的ESC和iPSC线实现了对最终内皮的高效和强大的分化,超过80%的表达Six17(图3)。在第10天,肝祖系显示出一种均匀的鹅卵石状形态,肝干细胞标记对法新社和HNF4+(>86%,图4)都非常丰富。使用手动和半自动化技术的组合,可以执行多种板格式的区分19。
以目前的形式,细胞分化适用于 体外 实验。然而,在临床应用之前可能需要细胞浓缩,以确保肝祖体的同质种群为分娩做好准备。
最后,这里描述的协议为该领域提供了一个标准化的方法,以大规模地产生肝祖。未来的工作将侧重于生产用于后续 HLC 分化、成熟和维护的新介质。
大卫·海是斯坦诺瓦特有限公司的联合创始人和股东。其余作者证明他们在本文所讨论的主题或材料中不存在利益冲突。
这项研究得到了MRC博士培训伙伴关系(MR/K501293/1)、英国再生医学平台(MRC MR/L022974/1和M/K026666/1)、首席科学家办公室(TCS/16/37)的奖项的支持。
Name | Company | Catalog Number | Comments |
DPBS with Calcium and Magnesium | ThermoFisher | 14040133 | |
Gentle cell dissociation reagent | STEMCELL Technologies | 7174 | |
Hoechst 33342 Ready Flow Reagent | thermofisher | R37165 | |
Human Recombinant Laminin 521 | BioLamina | LN521-02 | |
Human Serum Albumin ELISA | Alpha Diagnostics | 1190 | |
Human Serum Alpha Fetoprotein ELISA | Alpha Diagnostics | 500 | |
mTeSR1 medium | STEMCELL Technologies | 5850 | |
Operetta High-Content Imaging System | PerkinElmer | HH12000000 | |
PBS, no calcium, no magnesium | ThermoFisher | 14190250 | |
Penicillin-Streptomycin (10,000 U/mL) | Life Technologies | 15140122 | |
Rho-associated kinase (ROCK)inhibitor Y27632 | Sigma-Aldrich | Y0503-1MG | |
STEMdiff Definitive Endoderm Supplement CJ | STEMCELL Technologies | ||
STEMdiff Definitive Endoderm Supplement MR | STEMCELL Technologies | ||
STEMdiff Endoderm Basal Medium | STEMCELL Technologies | ||
STEMdiff Hepatic Progenitor Medium | STEMCELL Technologies | ||
TWEEN 20 | Sigma-Aldrich | P9416 | |
Antibodies | |||
Albumin | Sigma-Aldrich | A6684 | 1:200 (mouse) |
Alpha-fetoprotein | Sigma-Aldrich | A8452 | 1:400 (mouse) |
HNF-4α | Santa Cruz | sc-8987 | 1:400 (rabbit) |
IgG | DAKO | 1:400 | |
Sox17 | R&D Systems, Inc. | AF1924 | 1:200 (Goat) |
Software | |||
Columbus Image Data Storage and Analysis system | PerkinElmer |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。