JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该方案旨在提供脑肌粘连血管病的方法 - 在缺血性脑组织的皮瓣上移植血管颞肌瓣 - 用于治疗非烟雾病急性缺血性中风。该方法在增加血管生成方面的功效是在小鼠中使用瞬时大脑中动脉闭塞模型进行评估的。

摘要

对于大多数缺血性中风患者来说,没有有效的治疗方法,因此开发新的治疗方法势在必行。缺血性卒中后大脑的自我修复能力受到受影响区域血液供应不足的限制。脑肌粘连血管病(EMS)是一种神经外科手术,可在烟雾病患者中实现血管生成。它涉及开颅术,在缺血性脑表面放置血管颞肌移植物。EMS从未在小鼠急性缺血性卒中的情况下进行过研究。推动这项研究的假设是EMS增强了肌肉移植周围皮质表面的脑血管生成。此处显示的方案描述了该过程,并提供了支持EMS方法的可行性和有效性的初始数据。在该协议中,在短暂的大脑中动脉闭塞(MCAo)60分钟后,将小鼠随机分配到MCAo或MCAo + EMS治疗。EMS在闭塞后3-4小时进行。在MCAo或MCAo + EMS治疗后7或21天处死小鼠。使用烟酰胺腺嘌呤二核苷酸还原四唑还原酶测定法测量颞移植物活力。小鼠血管生成阵列定量了血管生成和神经调节蛋白的表达。免疫组织化学用于可视化移植物与脑皮层的结合和血管密度的变化。这里的初步数据表明,移植的肌肉在EMS后21天仍然存活。免疫染色显示移植物植入成功,肌肉移植物附近的血管密度增加,表明血管生成增加。数据显示,EMS增加成纤维细胞生长因子(FGF)并降低中风后的骨桥蛋白水平。此外,卒中后的EMS并没有增加死亡率,这表明该方案是安全可靠的。这种新手术有效且耐受性良好,并有可能为急性缺血性卒中后增强血管生成的新干预措施提供信息。

引言

缺血性卒中是一种急性神经血管损伤,伴有毁灭性的慢性后遗症。在美国,大多数中风幸存者(每年 650,000 人)患有永久性功能残疾1。没有一种可用的治疗方法在缺血性卒中的急性期后提供神经保护和功能恢复。急性缺血性中风后,直接和侧支血液供应减少,导致脑细胞和网络功能障碍,导致突发神经功能缺损23。恢复缺血区域的血液供应仍然是中风治疗的首要目标。因此,增强血管生成以促进缺血区域的血液供应是一种有前途的治疗方法;然而,先前研究的促进卒中后血管生成的方法,包括促红细胞生成素、他汀类药物和生长因子,受到不可接受的毒性或可转化性水平的限制4。

脑肌粘连血管病(EMS)是一种外科手术,可增强烟雾病患者的脑血管生成,烟雾病是一种经常导致中风的颅动脉狭窄的疾病。EMS 涉及患者颞肌的血管部分与颅骨部分分离,然后进行开颅手术并将肌肉移植到受影响的皮质上。该手术耐受性良好,可诱导脑血管生成,降低烟雾病患者缺血性卒中的风险56。因此,该程序在这些患者中主要起到预防作用。在缺血性卒中的情况下,该手术带来的血管生成也可能在促进神经血管保护和恢复方面发挥作用。该报告支持这样的假设,即EMS带来的血管生成有可能扩大对脑缺血的理解和治疗选择。

除了EMS,还有几种药理学和手术方法来改善血管生成,但它们有几个局限性。由于一些限制,包括形成混乱、无序、渗漏和原始血管丛,已发现血管内皮生长因子 (VEGF) 给药等药理学方法不足甚至有害,其类似于在肿瘤组织中发现的血管丛78 并且在临床试验中没有有益效果9.

手术方法包括直接吻合术,例如颞浅动脉-大脑中动脉吻合术,间接吻合术,例如脑-杜罗动脉-联合血管(EDAS),脑肌粘连血管病(EMS),以及直接和间接吻合的组合10。所有这些程序在小动物中都非常具有技术挑战性和要求,除了EMS。其他手术需要复杂的血管吻合术,而EMS需要相对简单的肌肉移植。此外,颞肌与皮层的接近使其成为移植的自然选择,因为它不需要完全切除或断开其血液供应,如果使用更远的肌肉进行移植,这是必要的。

EMS 已在大鼠711 的慢性脑灌注不足模型中进行了研究。然而,使用颞肌移植的EMS从未在啮齿动物的急性缺血性卒中中中中得到研究。在这里,我们描述了通过大脑中动脉闭塞模型(MCAo )在 缺血性中风后小鼠中EMS的新方案。本手稿描述了MCAo后小鼠EMS的这种新方法的方法和早期数据。

研究方案

所有实验均由康涅狄格大学健康机构动物护理和使用委员会批准,并按照美国指南进行。以下协议应适用于任何种类或品系的啮齿动物。在这里,使用8至12周龄,年龄和体重匹配的C57BL / 6野生型雄性小鼠。小鼠随意喂食标准食物饮食 和水。标准住房条件保持在72.3°F和30%-70%相对湿度,光照/黑暗循环12小时。

1. 术前准备

  1. 手术前通过高压灭菌对所有器械进行灭菌。用70%乙醇消毒操作表面,并用电加热垫将操作表面加热至37°C。
  2. 使用诱导室用4%-5%异氟醚麻醉小鼠进行诱导。通过鼻锥 输送 1.5%-2.0%异氟醚进行维护,直到手术结束。在手术前,通过评估对坚定的后脚捏合缺乏反应以及姿势反应和矫正反射的丧失,确保小鼠得到适当的麻醉。
  3. 将鼠标放在手术表面上的左侧,涂抹眼膏以保护双眼。
  4. 用电剪在手术区域(即眼睛和耳朵之间的右外侧颅骨)剃毛。从手术部位中间向外以同心圆清洁手术区域,然后用70%乙醇和聚维酮溶液,并重复这些步骤2次。
    注意:由于手术部位靠近眼睛,因此可能无法切除手术部位周围 150% 的区域以避免对眼睛的刺激或意外伤害。
  5. 通过皮下注射给予单剂量的0.25%布比卡因(高达8mg / kg体重),作为手术部位的术前镇痛。
  6. 以4倍放大倍率设置手术显微镜。显微镜用于所有手术步骤。

2. 手术程序

注意:手术步骤如图 1所示。对于该协议,将三只小鼠分配给假手术组,三只小鼠单独用于EMS,12只小鼠分配给MCAo,23只小鼠分配给MCAo + EMS组。

  1. MCAo手术
    注意:MCAo是啮齿动物缺血性中风的一个特征良好的模型,正如我们和其他人所描述的121314。此处简要描述了手术步骤。在异氟醚麻醉下,右MCAo在60分钟后再灌注7或21天,诱导局灶性短暂性脑缺血。
    1. 通过颈外动脉残端从颈内动脉分叉推进 10-11 mm 长的 6.0 硅橡胶涂层单丝,先切开腹颈中线切口,然后进行单侧右 MCAo。在假小鼠中,除了缝合线推进到颈内动脉外,进行相同的手术。
    2. 使用温度控制系统测量直肠温度,在手术过程中使用自动加热垫将温度保持在~37°C。
    3. 在缝合线插入之前,使用激光多普勒血流仪测量脑血流量,方法是将多普勒探头放在颅骨外侧(对应于MCA区域)并记录值8。要确认闭塞减少到基线脑血流量的 15%,请在缝合后使用相同的程序。要确认再灌注,请在拆线后使用相同的程序。
    4. 用湿醪喂养所有动物,直到处死和/或手术后 1 周,以确保慢性终点有足够的营养,因为动物在中风后有饲养缺陷。
  2. 特快专递手术
    1. MCAo60分钟后,将小鼠随机分为仅MCAo或MCAo + EMS组。在MCAo(MCAo + EMS组)后4小时进行EMS,或对选定的实验进行假手术(仅EMS组)。手术前换上一副新的无菌手术手套。
      注意:小鼠在MCAo60分钟后从麻醉中恢复,并在EMS手术前重新麻醉。
    2. 对于接受 EMS(MCAo + EMS 或仅限 EMS 的组)的组,用剪刀做一个 10-15 毫米的皮肤切口,从 1-2 毫米的嘴部延伸到右耳,再到 1-2 毫米的尾部到右眼。
      注意:使用无菌剪刀来防止意外损坏下面的颞肌。
    3. 使用夹子收起皮瓣,目视识别颞肌和颅骨。
    4. 用剪刀和展开技术将颞肌从颅骨上直接解剖。沿肌肉尾缘进行 2-3 mm 腹侧肌切开术,以促进腹侧反射。
    5. 使用微型钻头在反射的颞肌下方的颅骨处进行直径~5毫米的开颅手术。
    6. 用镊子取出硬脑膜,露出大脑的表面。要格外小心,以免意外伤害大脑。
    7. 用6-0根单烯细丝将颞肌的背缘缝合到背侧皮瓣的皮下组织,使其与暴露的大脑皮层齐平。
    8. 用6-0单丝缝合线关闭皮肤切口。将鼠标放回笼子中并监测直到从麻醉中恢复。将鼠标放回其外壳设施。

3.术后注意事项

  1. 每天监测小鼠的疾病和手术部位的感染。每日给予皮下生理盐水(按体重计体积为 1%)以支持补液。
  2. 监测严重脱水(体重减轻>20%),直到手术后 7 天。如果体重减轻 >20%,则额外推注皮下注射 1% 体积(按体重计)的生理盐水。
  3. 进行注射、生理监测和其他测试,无需特殊考虑。
    注意:在此程序中,避免使用阿片类药物或非甾体抗炎药(NSAIDs)治疗术后,因为这些药物对中风结局或梗死大小的已知影响与内部机构动物护理和使用委员会协商1516,1718然而,强烈建议使用术后镇痛药进行其他型号的EMS手术。请咨询机构动物护理和使用委员会(IACUC)。

结果

本研究共使用了41只小鼠。在三次死亡后,一次在MCAo中,两次在MCAo + EMS中,总共使用38只小鼠来获得所示结果。

统计学
每个实验的数据以平均±标准差(S.D.)表示。使用未配对学生的t检验来比较两组,或者使用单因素方差分析来确定两组以上的显著性,并使用Newman-Keuls事后检验来校正多重比较。

烟酰胺腺嘌呤二核苷酸(还原)-四?...

讨论

该协议描述了MCAo诱导的中风小鼠模型中成功的EMS程序。数据显示,移植的组织仍然有活力,并且可以在EMS手术后很长时间内与大脑皮层形成联系。这些发现支持使用脑肌肉移植物在中风部位逐渐形成丰富的血管营养环境的基本原理。EMS是一种有前途的疗法,可以在相同的环境中潜在地修复梗死的脑组织。

协议的关键步骤包括步骤2.2.4:此步骤对TM造成不可避免的创伤,这可能?...

披露声明

作者没有利益冲突需要披露。

致谢

这项工作得到了UConn Health(Ketan R Bulsara和Rajkumar Verma)和UConn Health初创公司(Rajkumar Verma)的支持。

材料

NameCompanyCatalog NumberComments
6-0 monocryl sutureEthilon697G
70% ethanol to sanitize operating surfaceWalgreens
Bupivacaine 0.25% solutionMidwest Vet
Clamps for tissue retractionRoboz
Doccal suture with silicone coatingDoccal Corporation602145PK10Re
Electric heating pad for operating surface
Isoflurane anesthesiaPiramal Critical Care Inc
Isoflurane delivery apparatusB6Surgivet (Isotech 4)
Micro drillHarvard Apparatus
Microdissecting tweezers, curved x2Piramal Critical Care Inc
mouse angiogenesis panel arratR& D biotechARY015
Needle driverEthilon
Ointment for eye protectionWalgreens
Operating microscopeOlympus
Operating surfaceOlympus
Povidone iodine solutionWalgreens
Rectal thermometerworld precison instrument
Saline or 70% ethanol for irrigationWalgreens
Small electric razor to shave operative siteGeneric
Surgical scissorsRoboz

参考文献

  1. Stroke, Last updated 10/22/20. , (2020).
  2. Cipolla, M. J., McCall, A. L., Lessov, N., Porter, J. M. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 28 (1), 176-180 (1997).
  3. Arai, K., et al. Cellular mechanisms of neurovascular damage and repair after stroke. Journal of Child Neurology. 26 (9), 1193-1198 (2011).
  4. Ergul, A., Alhusban, A., Fagan, S. C. Angiogenesis: a harmonized target for recovery after stroke. Stroke. 43 (8), 2270-2274 (2012).
  5. Imai, H., et al. The importance of encephalo-myo-synangiosis in surgical revascularization strategies for moyamoya disease in children and adults. World Neurosurgery. 83 (5), 691-699 (2015).
  6. Ravindran, K., Wellons, J. C., Dewan, M. C. Surgical outcomes for pediatric moyamoya: a systematic review and meta-analysis. Journal of Neurosurgery: Pediatrics. 24 (6), 663-672 (2019).
  7. Kim, H. S., et al. The neovascularization effect of bone marrow stromal cells in temporal muscle after encephalomyosynangiosis in chronic cerebral ischemic rats. Journal of Korean Neurosurgical Society. 44 (4), 249-255 (2008).
  8. Srivastava, P., et al. Neuroprotective and neuro-rehabilitative effects of acute purinergic receptor P2X4 (P2X4R) blockade after ischemic stroke. Experimental Neurology. , 329 (2020).
  9. Cao, R., et al. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proceedings of the National Academy of Sciences of the United States of America. 107 (2), 856-861 (2010).
  10. Hedlund, E., Hosaka, K., Zhong, Z., Cao, R., Cao, Y. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proceedings of the National Academy of Sciences of the United States of America. 106 (41), 17505-17510 (2009).
  11. Cao, Y. Therapeutic angiogenesis for ischemic disorders: what is missing for clinical benefits. Discovery Medicine. 9 (46), 179-184 (2010).
  12. Verma, R., et al. Inhibition of miR-141-3p ameliorates the negative effects of poststroke social isolation in aged mice. Stroke. 49 (7), 1701-1707 (2018).
  13. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  14. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice-middle cerebral artery occlusion with the filament model. Journal of Visualized Experiments. 47 (47), 2423 (2011).
  15. Pétrault, M., et al. Neither nefopam nor acetaminophen can be used as postoperative analgesics in a rat model of ischemic stroke. Fundam Clin Pharmacol. (2), 194-200 (2017).
  16. Khansari PS, ., Halliwell RF, . Mechanisms Underlying Neuroprotection by the NSAID Mefenamic Acid in an Experimental Model of Stroke. (64), (2019).
  17. Mishra, V., Verma, R., Raghubir, R. Neuroprotective effect of flurbiprofen in focal cerebral ischemia: the possible role of ASIC1a. Neuropharmacology. 59 (7-8), 582-588 (2010).
  18. Chen, T. Y., Goyagi, T., Toung, T. J., Kirsch, J. R., Hurn, P. D., Koehler, R. C., Bhardwaj, A. Prolonged opportunity for ischemic neuroprotection with selective kappa-opioid receptor agonist in rats. Stroke. 35 (5), 1180-1185 (2004).
  19. Turóczi, Z., et al. Muscle fiber viability, a novel method for the fast detection of ischemic muscle injury in rats. PLoS ONE. 9 (1), e84783 (2014).
  20. Im, K., Mareninov, S., Diaz, M. F. P., Yong, W. H. An introduction to performing immunofluorescence staining. Methods in Molecular Biology. , 299-311 (2019).
  21. Zheng, J., et al. Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology. 293 (6), H3685-H3691 (2007).
  22. Jiao, C., et al. Visualization of mouse choroidal and retinal vasculature using fluorescent tomato lectin perfusion. Translational Vision Science and Technology. 9 (1), (2020).
  23. Simard, J. M., Sahuquillo, J., Sheth, K. N., Kahle, K. T., Walcott, B. P. Managing malignant cerebral infarction. Current Treatment Options in Neurology. 13 (2), 217-229 (2011).
  24. Liu, X., et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nature Communications. 12 (1), 1832 (2021).
  25. Paro, M., Gamiotea-Turro, D., Blumenfeld, L., Bulsara KR, ., Verma, R. A Novel Model for Encephalomyosynangiosis Surgery after Middle Cerebral Artery Occlusion-Induced Stroke in Mice. BioXriv. 10, (2021).
  26. Venkat, P., et al. Treatment with an Angiopoietin-1 mimetic peptide promotes neurological recovery after stroke in diabetic rats. CNS Neuroscience & Therapeutics. 27 (1), 48-59 (2021).
  27. Cheng, X., et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurological Research. 33 (7), 675-680 (2011).
  28. Xu, H. Protective effects of mutant of acidic fibroblast growth factor against cerebral ischaemia-reperfusion injury in rats. Injury. 40 (9), 963-967 (2009).
  29. Tsai, M. J., et al. Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model. Neuroscience. 305, 238-247 (2015).
  30. Meller, R., et al. Neuroprotection by osteopontin in stroke. Journal of Cerebral Blood Flow & Metabolism. 25 (2), 217-225 (2005).
  31. Meseguer, E., et al. Osteopontin predicts three-month outcome in stroke patients treated by reperfusion therapies. Journal of Clinical Medicine. 9 (12), 4028 (2020).
  32. Zhu, Z., et al. Plasma osteopontin levels and adverse clinical outcomes after ischemic stroke. Atherosclerosis. 332, 33-40 (2021).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

184

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。