由于其作为模型物种在各个研究领域的多功能应用,因此需要窄叶车前草(车前草)的遗传转化工具包。 在这里,使用 根癌农杆菌介导的转化,提出了一种方案,该方案可产生转化效率为20%的稳定转基因系。
车前子属的物种有几个独特的特征,导致它们被改编为各个研究领域的模式植物。然而,缺乏遗传操作系统阻碍了对基因功能的深入研究,限制了该属作为模型的多功能性。在这里,提出了车前草的转化协议,车前草是最常见的研究车前草物种。 使用根癌农杆菌介导的转化,将无菌生长的杉木植株的3周龄根部感染细菌,孵育2-3天,然后转移到具有适当抗生素选择的芽诱导培养基中。枝条通常在1个月后从培养基中出来,根在芽转移到根诱导培养基后1-4周发育。然后将植物适应土壤环境,并使用β-葡糖醛酸酶(GUS)报告基因测定法测试转基因的存在。目前方法的转化效率为~20%,每转化10个根组织就有2株转基因植物出现。建立窄叶车前草的转化协议将有助于该植物作为各个领域的新模式物种的采用。
使用模式物种研究植物生物学多个方面的概念随着拟南芥1的广泛使用而出现。最初选择拟南芥是因为它与许多其他开花植物具有共同特征,并且具有多种特征,便于在实验室环境中研究,例如体积小且生成周期短。以它为主题发表的大量研究论文,以及其小基因组大小和易于遗传转化2,使其能够作为一种广泛使用的实验生物体持续存在。然而,拟南芥作为具有不同特征或独特性状的物种的模型可能受到限制3.这促使了新的模型系统的发展,例如玉米(Zea mays)和番茄(Solanum lycopersicum),它是进化研究,水果发育和生产的重要模型,并且是蔬菜作物5的良好代表。遗传转化方法是植物物种作为模式生物的先决条件2. 根癌农杆菌介导的转化是植物生物学中的可靠工具;它已被用于转化一些模式物种和主要作物,包括烟草(烟草)6,水稻(水稻)7,棉花(棉)8,大豆(甘氨酸max)9,马铃薯(Solanum tuberosum)10和油菜(芸苔油菜)11。 植物物种对根癌曲霉感染的反应成功程度差异很大,转化方案通常需要针对每个物种单独定制6,12。
车前子属共有256种植物,广泛分布于全世界13种。该属的物种通常具有独特的特征,使它们成为研究遗传学,生态学,压力生理学,次生代谢物,药物化学,植物 - 微生物相互作用,植物发育和进化的理想模型物种。车前草,也称为窄叶或苔藓车前草,自 19世纪以来一直是一种受欢迎的植物,当时它首次用于描述雄性不育现象14。像其属的其他植物一样,它已被用于各种研究领域的研究。最近,它被提议作为血管生物学的模型,因为它的血管组织可以很容易地收集15。P. lanceolata是车前草属中最常研究的物种;根据 2022 年 12 月 9 日进行的 PubMed 搜索,2021 年的一篇文章报告说,当时>有 1,400 份出版物包括或与该物种有关16 篇,自 2022 年初以来又发表了 102 篇文章。该属中研究量第二大的植物P. major在同一天使用相同的标准进行搜索时,只有414篇文章的主题。
尽管对 披针叶松的研究感兴趣,但研究,特别是关于基因功能表征的研究,往往受到缺乏该物种遗传操作工具包的限制。Pommerrienig等人努力使用花卉浸渍技术开发P . major 的转化方案17。然而,该方法不能应用于 披针叶松 ,因为该物种的雄性不育特性18,19。据我们所知,没有现有的方案可以转化 披针叶松。
本研究提出了根 癌杆菌介导的 披针叶松转化的简单方案。通过靶向根组织,可以在转化后3个月内产生完全生长的转基因植物。
注意:步骤1.4-1.8,2.3-2.5,3.3-3.6,4.1-4.6,5.1-5.7和6.1-6.3必须在无菌条件下进行,使用干净的罩以防止污染。
1. 植物材料繁殖转化
2. 质粒构建与 大肠杆菌 转化
注意:确切的质粒构建程序因目的基因而异。在此过程中,使用标准克隆程序20,使用限制性内切酶HindIII和SalII将1.5kb AtPP2启动子插入带有GUS的二元质粒pBI101(参见材料表)中。AtPP2(韧皮部蛋白2)是一种在韧皮部21中特异性表达的基因。
3. 根癌杆菌 质粒转化
4. 根癌A. 准备
5. 车前子 根的转化
6. 选择和全株再生
7. 土壤转移
8. β-葡糖醛酸酶(GUS)组织化学染色
这里报告了使用根癌农杆菌介导的转化获得转基因柳叶松植物的简单方案。报告基因GUS(编码β-葡萄糖醛酸酶)在韧皮部表达的AtPP2启动子的驱动下,通过根癌曲霉菌株GV3101转化为3周龄的披针叶松根(图2)。之所以选择韧皮部特异性启动子,是因为我们的主要兴趣是建立一个植物维管组织(特别是韧皮部)的功能基因组学系统。在初步实验中,该方法在根,叶和叶柄组织上进行了测试。尽管可以在所有组织类型中诱导愈伤组织,但在SIM中1个月后,只有根组织产生首字母(图5A);叶子和叶柄变成棕色并死亡(图5B)。由此得出的结论是,根组织是用于转化方法的最佳组织类型。将根在悬浮溶液(SS)(表1)中重悬的制备细菌中孵育至少20分钟,然后在室温下在固体SS板上在黑暗中孵育长达3天(图3E)。然后将根转移到芽诱导介质(SIM)中,并在协议中指示的条件下(步骤1.6)保持在生长灯下。图1和图3显示了协议每个步骤的代表性图像以供参考。
图6显示了从转化组织中出现的芽首字母的进展,从根放在SIM上的第一天(图6A)到芽准备生根(图6D)。1周后,根组织形成愈伤组织(图6B),并且可以观察到芽首字母的开始(图6B1)。芽在第2周和第3周继续出现(图6C),4周后,芽准备转移到根诱导培养基(图6D)。
使用β-葡萄糖醛酸酶(GUS)组织化学测定法对假定的转基因植物进行鉴定,使用枝条长约0.5厘米后采集的叶段。阳性转基因植物在韧皮部局部组织中显示出预期的染色模式,如图 4所示。将GUS染色的阳性枝条转移到根诱导培养基中,其中它们在4周后发展出强大的生根系统(图1E)。然后将有根的植物转移到土壤中。 图4 显示了用AtPP2启动子和β-葡糖醛酸酶(GUS)基因转化的窄叶车前草染色的结果,以及用 AtPP2 启动子转化的野生型和窄叶车前草,以进行比较。 所有出现的枝条都被证实是转基因的。转化效率平均为20%,每转化10根根约发2个芽。将确认的转基因植物转移到较大的盆中并生长4-8周,直到它们达到成虫阶段(图1F)。
图1: 车前草 转化时间线。 协议每个阶段的代表性图像。(A)未发芽的种子接种在MS板上。(B)种子在1周后发芽,准备转移到洋红色盒子中。(C)生长3周后MS盒中的植物。根是绿色和健康的,处于理想的转化阶段。(D)4周后在芽诱导介质中的芽准备转移到生根培养基中。在此阶段,如果适用,可以进行β-葡糖醛酸酶 (GUS) 组织化学染色。(E)植物装在带有根诱导培养基的盒子中,根在生长4周后形成。(F)转基因植物在土壤中生长4周后生长至全长。 请点击此处查看此图的大图。
图 2:插入韧皮部特异性启动子 AtPP2 的二元载体质粒 pBI101 + β-葡萄糖醛酸酶 (GUS) 示意图。 请点击此处查看此图的大图。
图 3:转换步骤。 每个转换步骤的代表性图像。(A)转化过程中将根与芽分离。(B)将根浸泡在细菌/SS悬浮液中。(C)在纸巾上擦干根部以去除多余的细菌。(D)根铺在共培养基上。(E) 用铝箔包裹的不锈钢板。将植物孵育2-3天,然后转移到射击介质中。 请点击此处查看此图的大图。
图 4:GUS 染色。 窄叶车前草叶段的β-葡糖醛酸酶 (GUS) 染色结果。(A)野生型。(B)用含有AtPP2启动子的质粒(空载体)转化的窄叶车前草。(C)用含有AtPP2启动子和β-葡糖醛酸酶(GUS)基因的质粒转化的窄叶车前草。使用GUS组织化学染色方案对每片叶子进行染色,然后用显微相机成像。图像(B)和(C)由于缺乏GUS基因而没有显示染色模式。右图显示了静脉中清晰的蓝色染色图案,确认这些植物是转基因的。条代表1毫米,每个叶段长约1厘米。请点击此处查看此图的大图。
图5:在注射培养基上孵育>1个月后不同组织类型的转化效率比较 。 (A)生长超过1个月的根组织。根部经历了扩大的愈伤组织,并且出现了芽首字母。未转化的愈伤组织已开始因抗生素选择而死亡。(B)生长超过1个月的叶和叶柄组织。组织经历了一些愈伤组织扩张,但很快就因抗生素而死亡。两个组织均未出枝。 请点击此处查看此图的大图。
图6:转化组织上愈伤组织和芽的出现。 不同孵育长度后放置在拍摄培养基上的组织的代表性图像。(A)刚铺在拍摄介质上的根组织。(B)在注射培养基上1周后的根组织。可以观察到愈伤组织扩张,并且(B1)第一个芽首字母已经开始出现。(C)在拍摄介质上3周后的根组织。出现了更多的拍摄首字母。(C1)从B1拍摄开始的拍摄。(D)孵育4周后的根组织。未转化的组织已开始变成黑色/棕色并死亡,并且新芽继续生长。在这个阶段,芽准备移动到生根培养基。 请点击此处查看此图的大图。
表 1:培养基制备配方。 描述如何准备转化介质。添加的维生素量是根据指示的储备溶液浓度计算的。维生素储备溶液的制备见 表2 。对于所有培养基,将试剂加入 900 mL 双蒸 H 2 O 中,pH值至指定水平,然后加水至最终体积为 1,000 mL。* = 灭菌后添加。** = pH 值,1 M KOH。= 含 1 M 氢氧化钠的 pH 值。 请按此下载此表格。
表2: 车前子 培养基的维生素储备。 所有维生素在储存前必须经过过滤灭菌并准确贴标。如有指示,首先将粉末溶解在1N NaOH中,然后用双蒸H2O补充所需 体积。
车 前草 属植物缺乏转化方案限制了这些植物作为模型的使用,特别是当研究人员对探索基因功能感兴趣时。 选择P. lanceolata 来开发遗传转化方案,因为它是其属16中最常研究的植物。已经开发的协议可能会被用作进一步推进与血管生物学,生态学,植物 - 昆虫相互作用和非生物应激生理学相关的研究的工具。
所提出的协议清楚地概述了允许用户获得转基因植物的步骤。除了 披针叶松 在组织培养环境中茁壮成长的能力外,多种因素也促成了我们转化方法的成功。首先,观察到使用高质量、无菌的植物根组织进行转化的重要性。当根系取自3-4周龄的植物时,它们的转化率最高,呈绿色或淡白色。从具有任何细菌或真菌污染的盒子中取出的根通常会导致受污染的芽培养物,而呈现棕色的旧根不会导致成功转化。根组织是使用当前方法转化最有效的组织类型,因为叶和叶柄组织在发育芽方面不成功。
另一个重要的观察结果是,收集根组织进行转化的最佳方法是将新鲜切割的根材料放入无菌水中。这一步有效地允许根材料在收集组织的其余部分时保持水分,因为根在从其生长容器中取出时往往会迅速变干。这一步还有助于提高转化的成功率,因为它允许一次在细菌中孵化更多的根。
可以通过将根组织在共培养基中孵育的时间减少到2天来修改该方案。据观察,2或3天的潜伏期足以允许导致芽首字母的感染。然而,不建议更长的孵育时间,因为观察到培养基中缺乏抗生素抑制剂通常会导致 根癌曲霉 过度生长,从而杀死新出现的组织。
本研究的局限性是缺乏关于其他方法或种类的根癌杆菌在杉木转化中的表现的可用数据,以便进行比较。据我们所知,该协议是新颖的。在最初的试验中,注意到根癌农杆菌GV3101具有很高的转化效率,我们专注于使用该菌株改进该技术,而不是试验其他菌株。我们20%的转化效率对于工厂改造来说是相对较高的 - 许多传统方法认为任何>1%都是成功的26,27,28。然而,使用另一种根癌曲霉菌株,如根瘤菌,以其用于多个物种的根系转化而闻名29,30,31,可能会导致更高的成功率。需要进一步的实验来评估使用其他菌株促进柳叶松转化效率提高的影响。
披针叶松的成功转化可能会使许多研究领域受益。植物在组织培养基中的高转化效率和快速生长使披针叶松成为基因功能研究的可行候选者15。
作者没有什么可透露的。
这项工作得到了美国国家科学基金会(EDGE IOS-1923557 to C.Z.和Y.Z.)的支持。
Name | Company | Catalog Number | Comments |
14 mL Round Bottom TubeA4A2:A34 | ThermoFisher Scientific | 150268 | |
1-Naphthylacetic acid | Gold Biotechnology | N-780 | |
3M Micropore Surgical Paper Tape | ThermoFisher Scientific | 19-027761 | |
50 mL Centrifuge Tubes | Research Products International Corp. | 163227LC | |
600 Watt High Pressure Sodium Lights | Plantmax | PX-LU600 | |
6-Benzylaminopurine (6-BAP) | Gold Biotechnology | B-110 | |
Aluminum Foil | ThermoFisher Scientific | 01-213-100 | |
Bacto Agar | Thermofisher Scientific | 214010 | |
Binary Plasmid pBI101 | Clontech, USA | 632522 | |
Cool White Grow Light Sylvania LLC | Home Depot | 315952205 | |
D-biotin | ThermoFisher Scientific | BP232-1 | |
ddH2O | |||
DH5a E. coli | Invitrogen, USA | 18258012 | |
Disposable Petri Dishes, Sterile 150 x 16 mm | ThermoFisher Scientific | FB0875712 | |
Disposable Petri Dishes, Sterile 95 x 15 mm | ThermoFisher Scientific | FB0875714G | |
Dissecting Scissors | Leica Biosystems | 38DI12044 | |
Ethanol 200 Proof | Decon Labs | 2705 | |
Folic Acid | Fisher Scientific | BP2519-5 | |
Forceps | Leica Biosystems | 38DI18031 | |
Gelrite | Research Products International Corp. | G35020-1000 | |
Glycerol | ThermoFisher Scientific | 17904 | |
Glycine | Sigma | 241261 | |
Incubated Tabletop Orbital Shaker | ThermoFisher Scientific | SHKE420HP | |
Indole-3-Acetic Acid (IAA) | Gold Biotechnology | I-110 | |
Indole-3-Butyric Acid (IBA) | Gold Biotechnology | I-180 | |
Kanamycin Monosulfate | Gold Biotechnology | K-120 | |
Macrocentrifuge | ThermoFisher Scientific | 75007210 | |
Magenta Boxes | ThermoFisher Scientific | 50255176 | |
Micro Pipet Tips 1000 µL | Corning | 4140 | |
Micro Pipet Tips 200 µL | Corning | 4138 | |
Micro Pipette Tips 10 µL | Corning | 4135 | |
Microcentrifuge | ThermoFisher Scientific | 75002410 | |
Micropipettor 0.5-10 µL | Corning | 4071 | |
Micropipettor 100-1000 µL | Corning | 4075 | |
Micropipettor 20-200 µL | Corning | 4074 | |
Micropipettor 2-20 µL | Corning | 4072 | |
Murashige & Skooge Basal Medium with Vitamins | PhytoTech | M519 | |
Murashige & Skooge Basal Salt Mixture | PhytoTech | M524 | |
myo-Inositol | Gold Biotechnology | I-25 | |
Nicotinic acid | Sigma | N0761-100g | |
Parafilm (paraffin film) | ThermoFisher Scientific | S37440 | |
Potassium Hydroxide (KOH) | Research Products International Corp. | P44000 | |
Pyridoxine HCl | Sigma | P6280-10g | |
Scalpel Blade Handle | Leica Biosystems | 38DI36419 | |
Scalpel Blades | Leica Biosystems | 3802181 | |
Sodium Chloride, Crystal (NaCl) | Mallinckrodt Chemicals | 7581-06 | |
Sodium Hydroxide (NaOH) | Research Products International Corp. | S24000 | |
Sodium Hypochlorite | Walmart | 23263068401 | |
Soil- Bark Mix | Berger, USA | BM7 | |
Square Pots (3.5 inches squared) | Greenhouse Megastore | CN-TRK-1835 | |
Sucrose | Research Products International Corp. | S24060 | |
Thermocycler | ThermoFisher Scientific | A24811 | |
Thiamine HCl | Sigma | T4625-5G | |
Timentin Ticarcillin/Clavulanate (15/1) (Timentin) | Gold Biotechnology | T-104 | |
trans-Zeatin Riboside (ZR) | Gold Biotechnology | Z-100 | |
Tryptone | Thermofisher Scientific | 211705 | |
Wild Type Plantago lanceolata seeds | Outsidepride Seed Source, OR, USA | F1296 | Outsidepride.com |
Yeast Extract Granulated | Research Products International Corp. | Y20025-1000 |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。