需要订阅 JoVE 才能查看此. 登录或开始免费试用。
We recently identified retinal capillary stiffening as a new paradigm for retinal dysfunction associated with diabetes. This protocol elaborates the steps for isolation of mouse retinal capillaries and the subendothelial matrix from retinal endothelial cultures, followed by a description of the stiffness measurement technique using atomic force microscopy.
Retinal capillary degeneration is a clinical hallmark of the early stages of diabetic retinopathy (DR). Our recent studies have revealed that diabetes-induced retinal capillary stiffening plays a crucial and previously unrecognized causal role in inflammation-mediated degeneration of retinal capillaries. The increase in retinal capillary stiffness results from the overexpression of lysyl oxidase, an enzyme that crosslinks and stiffens the subendothelial matrix. Since tackling DR at the early stage is expected to prevent or slow down DR progression and associated vision loss, subendothelial matrix, and capillary stiffness represent relevant and novel therapeutic targets for early DR management. Further, direct measurement of retinal capillary stiffness can serve as a crucial preclinical validation step for the development of new imaging techniques for non-invasive assessment of retinal capillary stiffness in animal and human subjects. With this view in mind, we here provide a detailed protocol for the isolation and stiffness measurement of mouse retinal capillaries and subendothelial matrix using atomic force microscopy.
Retinal capillaries are essential for maintaining retinal homeostasis and visual function. Indeed, their degeneration in early diabetes is strongly implicated in the development of vision-threatening complications of diabetic retinopathy (DR), a microvascular condition that affects nearly 40% of all individuals with diabetes1. Vascular inflammation contributes significantly to retinal capillary degeneration in DR. Past studies have demonstrated an important role for aberrant molecular and biochemical cues in diabetes-induced retinal vascular inflammation2,3. Howeve....
All animal procedures were performed in accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research and approved by the Institutional Animal and Care Use Committees (IACUC; protocol number ARC-2020-030) at the University of California, Los Angeles (OLAW institution animal welfare assurance number A3196-01). The following protocol has been performed using retinal capillaries isolated from adult (20-week-old) male C57BL/6J mice weighing .......
Mouse retinal capillaries
AFM stiffness measurement of isolated retinal capillaries involves sample handling steps that could potentially damage their mechanostructural integrity. To prevent this and thereby ensure the feasibility, reliability, and reproducibility of AFM measurements, the enucleated eyes are fixed in 5% formalin overnight at 4 °C prior to vessel isolation. This mild fixation protocol with reduced formalin concentration, low fixation temperature, limited fixation time, and lack.......
AFM has been widely used to measure disease-associated changes in the stiffness of larger vessels, such as the aorta and arteries16. These findings have helped establish the role of endothelial mechanobiology in cardiovascular complications such as atherosclerosis17. Based on these findings, we have begun to investigate the previously unrecognized role of endothelial mechanobiology in the development of retinal microvascular lesions in early DR. Success in this pursuit, how.......
This work was supported by National Eye Institute/NIH grant R01EY028242 (to K.G.), Research to Prevent Blindness/International Retinal Research Foundation Catalyst Award for Innovative Research Approaches for AMD (to K.G.), The Stephen Ryan Initiative for Macular Research (RIMR) Special Grant from W.M. Keck Foundation (to Doheny Eye Institute), and Ursula Mandel Fellowship and UCLA Graduate Council Diversity Fellowship (to I.S.T.). This work was also supported by an Unrestricted Grant from Research to Prevent Blindness, Inc. to the Department of Ophthalmology at UCLA. The content in this article is solely the responsibility of the authors and does not necessarily....
Name | Company | Catalog Number | Comments |
Retinal Capillary Isolation | |||
0.22 µm PVDF syringe filter | Merck Millipore | SLGVM33RS | Low Protein Binding Durapore |
10X Dulbecco's Phosphate Buffered Saline without calcium % magnesium | Corning | 20-031-CV | Final concentration 1X, pH 7.4 |
12-well plate | Falcon Corning | 353043 | |
15 mL centrifuge tube | Corning | 430791 | Rnase-Dnase-free, Nonpyrogenic |
20 mL Luer-Lok TIP syringe | BD | 302830 | |
5 3/4 inch Disposable Borosilicate Glass/Non-sterile Pasteur pipette | FisherBrand | 13-678-20A | |
60x15 mm Tissue Culture Dish | Falcon Corning | 353002 | |
6-well plate | Falcon Corning | 353046 | |
Aqua-Hold 2 Pap - 13 mL Pen | Scientific Device Laboratory | 9804-02 | |
Blade holder | X-ACTO | ||
Carbon Steel Surgical Blade #10 | Bard-Parker | 371110 | |
Dental Wax | Electron Microscopy Sciences | 50-949-027 | |
Dissecting microscope | Am-scope | ||
Formalin solution, neutral buffered, 10% | Millipore Sigma | HT501128-4L | Final concentration 5% (v/v) |
Kimwipes - wiper tissue | Kimtech Science | 34133 | |
Micro spatula | Fine Science Tools | 10089-11 | |
Orbital Shaker | Lab Genius | SK-O180 | |
PELCO Economy #7 Stainless Steel 115mm Tweezer | Ted Pella, Inc. | 5667 | |
Phase contrast microscope | Nikon TS2 | ||
Purifier Logic+ Class II, Type A2 Biosafety Cabinet | Labconco | 302380001 | |
Safe-Lock microcentrifuge tubes 2 mL | Eppendorf | 22363352 | |
Stereoscope | AmScope | SM-3 Series Zoom Trinocular Stereomicroscope 3.5X-90X | |
Superfrost Plus microscopy slide - White tab - Pre-cleaned - 25x75x1.0 mm | FisherBrand | 1255015 | |
Tris Buffer, 0.1M solution, pH 7.4 - Biotechnology Grade | VWR | E553-500ML | pH 8 for trypsin solution |
Trypsin 1:250 powder Tissue Culture Grade | VWR | VWRV0458-25G | 10 % (w/v) trypsin solution |
Water Molecular Biology Grade | Corning | 46-000-CM | |
Subendothelial Matrix | |||
10X PBS | Corning | 20-031-CV | |
1X PBS with calcium and magnesium | Thermo Fisher Scientific | 14040-117 | pH 7.4 |
Ammonium hydroxide | Sigma-Aldrich | 338818 | |
Ascorbic Acid | Sigma-Aldrich | A4034 | |
Collagen IV antibody | Novus Biologicals | NBP1-26549 | |
DNase I | Qiagen | 79254 | |
Ethanolamine | Sigma-Aldrich | 398136 | |
Fibronectin antibody | Sigma-Aldrich | F6140 | |
Fluoromount | Invitrogen-Thermo Fisher Scientific | 00-4958-02 | |
Gelatin | Sigma-Aldrich | G1890 | |
Glass coverslips (12mm) | Fisher | 12-541-000 | |
Glutaraldehyde | Electron microscopy Sciences | 16220 | |
Human retinal endothelial cells (HREC) | Cell Systems Corp | ACBRI 181 | |
MCDB131 medium | Corning | 15-100-CV | |
Mouse retinal endothelial cells (mREC) | Cell Biologics | C57-6065 | |
Triton X-100 | Thermo Fisher Scientific | BP151-100 | |
Trypsin | Gibco-Thermo Fisher Scientific | 25200-056 | |
AFM Measurement | |||
1 µm Probe | Bruker | SAA-SPH-1UM | A 19 micron tall hemispherical probe with 1 micron end radius, Spring constant 0.25N/m |
70 nm LC probe | Bruker | PFQNM-LC-V2 | A 19 micron tall hemispherical probe with 70nm end radius, Spring constant 0.1N/m |
camera | XCAM family | Toupcam | 1080P HDMI |
Desktop to run the camera | Asus | Asus desktop | Intel i5-6600 CPU , 8GB RAM |
Dish holder for coverslip | Cellvis | D29-14-1.5-N | 29mm glass bottom dish with 14 mm micro-well |
Nanowizard 4 | Bruker | Nanowizard 4 | Bioscience atomic force microscope mounted on an optical microscope for sensitive measurement of the mechanostructural properties (stiffness and topography) of soft biological samples |
Phase contrast micrscope | Zeiss | Axiovert 200 | Inverted microscope with 10X objective |
Explore More Articles
This article has been published
Video Coming Soon
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。