在这里,我们展示了一种相对简单明了的程序来组装膜系系肌收缩蛋白网络,并使用先进的光学显微镜技术研究动力学。关键优点是我们的测定允许顺序添加蛋白质和小分子,而不会干扰膜系留网络。该方法可以很容易地适用于研究其他细胞骨架蛋白或复合网络。
该方案最关键的部分是确保正确形成支持的脂质双层,因此首先,我们必须在开始添加细胞骨架蛋白之前掌握这一步。首先,取三到五个矩形玻璃盖玻片,并将它们放入科普林罐中。打开浴槽超声仪,将温度设置为65摄氏度。
用 2% 清洁溶液填充 Coplin 罐以完全浸没盖玻片,并将其以全脉冲模式放入超声仪中 30 分钟。使用钝的PTFE涂层镊子逐个取出盖玻片。用蒸馏水彻底冲洗,然后将它们放入另一个装有两个普通氢氧化钠的科普林罐中。
在全脉冲模式下超声处理盖玻片20分钟。取下盖玻片,用蒸馏水彻底冲洗,然后放入另一个装满蒸馏水的科普林罐中。在开始实验之前,将罐子放在装有氮气供应的化学罩中。
使用手套和镊子取下盖玻片,在氮气流下干燥。擦干两面,并将它们放在带盖子的干净塑料网格上。将装有盖玻片的盒子放入干燥器中以避免与灰尘颗粒接触,然后取高压灭菌的PCR管,并用锋利的手术刀片切下盖子和下锥形半部分。
取圆柱形半切管,在每个切割管的光滑边缘涂上紫外线固化粘合剂,然后将其倒置放在新清洁的盖玻片上,使边缘平放在盖玻片上。一旦将气缸定位在盖玻片上,请勿横向移动,以确保胶水不会溢出到腔室的中心空间。将腔室轴承盖玻片放入具有氧气供应和真空的紫外线臭氧清洁剂中。
打开紫外线灯并照亮三到五分钟,让粘合剂聚合。取出盖玻片并测试腔室是否泄漏,并丢弃泄漏的腔室。用SLB形成缓冲液洗涤每个腔室,最后留下100微升缓冲液。
用永久性标记标记将缓冲液的水平标记为100微升,然后向腔室中加入两微升0.1摩尔氯化钙,然后向每个腔室中加入8微升SUV溶液,并在25摄氏度下孵育15分钟。取出 50 微升 SLB 形成缓冲液,在样品室中仅保留 50 微升,然后将 100 微升一个 XKMEH 加入腔室并轻轻混合。在不接触底部的情况下取出 100 微升缓冲液。
通过加入 100 微升一个 XKMEH 并去除 100 微升来重复洗涤 8 到 10 次。向双层中加入 10 微升每毫升 1 毫克 β-酪蛋白,轻轻混合,并在室温下孵育 5 至 10 分钟。用一个XKMEH洗掉β-酪蛋白三次,并将缓冲液水平恢复到100微升标记。
在β-酪蛋白孵育期间,取出等分试样的膜肌动蛋白接头蛋白,用于零下80摄氏度,在37摄氏度下快速解冻,然后将其保存在冰上。用蛋白质稀释缓冲液将等分试样稀释至一微摩尔的浓度。将接头蛋白以规定的最终浓度添加到溶液中,并轻轻混合。
在室温下孵育30至40分钟,并用一种XKMEH缓冲液洗涤三至五次以除去未结合的HSE蛋白。将每个腔室中的缓冲液水平恢复到 100 微升标记。样品现已准备好进行成像。
打开显微镜、激发激光器和检测相机。确保激光对准,物镜清洁,软件已准备好采集图像。将油放在100倍物镜上,将样品安装在显微镜载物台上,然后将物镜聚焦在双层上。
确保激光位置使其在样品上经历全内反射。使用 488 纳米激发。为了确定双层的完整性,通过选择双层上的感兴趣区域并使用提供五比一或更高的信噪比的成像条件记录一些视野图像来执行快速FRAP测定。
暂停记录,并关闭TIRF显微镜的视场光阑,将集中的激光束聚焦在双层的小圆形区域,以局部漂白荧光团。将激光打开到最大输出以光漂白小区域 3 到 10 秒,然后关闭激光。将视场光阑重新打开至其原始半径,将成像条件重新调整回漂白前设置,并立即恢复记录视场中荧光信号的恢复。
检查双层是否流动,并将图像另存为 16 位点 TIF 文件。以 10:1 摩尔比混合未标记和荧光标记的 G-肌动蛋白,并用 G 缓冲液加满,使 G-肌动蛋白的浓度为 20 微摩尔。向混合物中加入10倍ME缓冲液的十分之一以获得一次性溶液,并在室温下孵育两分钟。
接下来,在 37 摄氏度下快速解冻一瓶加盖蛋白质原液,然后将其放在冰上。用G缓冲液稀释,使加帽蛋白的浓度现在是所需最终浓度的两倍,然后将等体积的稀释加帽蛋白溶液加入肌动蛋白混合物中。最后,向反应混合物中加入等体积的新鲜两倍目标缓冲液。
溶液的最终体积应为肌动蛋白混合物体积的四倍。确保成分的最终浓度如文本手稿中所述。将样品在25摄氏度的黑暗中孵育45至60分钟以使其聚合。
用钝端移液器尖端轻轻移出五微摩尔聚合肌动蛋白,并将其添加到干净的高压灭菌PCR管中。向试管中加入一个XKMEH,使最终体积超过20微升,并轻轻混合以避免剪切F-肌动蛋白。从安装的样品室中取出等体积的缓冲液。
将聚合的肌动蛋白溶液加入腔室中,轻轻上下移液三次,不要接触底部的双层。将样品安装在TIRF显微镜上,静置20至30分钟。在F-肌动蛋白添加达到稳定状态后,从不同视野记录一些图像。
肌动蛋白孵育30分钟后,将样品装回显微镜上。检查接头蛋白和F-肌动蛋白通道上的信号。如果需要,调整成像条件。
选择一个好的区域进行长时间的延时录制。在添加肌球蛋白之前,以 0.1 到 0.2 赫兹录制 10 到 15 帧,然后暂停录制。用钝端移液器吸头从库存小瓶中移出所需体积的回收肌肉肌球蛋白二,并添加到干净的高压灭菌PCR管中。
立即在管中加入一个XKMEH,使体积超过20微升,并轻轻混合。小心地从安装的样品室中取出等体积的KMEH缓冲液,不要干扰它,然后将肌球蛋白溶液轻轻添加到样品室中。不要上下移液,因为它会干扰表面结合的细丝。
立即恢复延时记录,并保存所有图像,然后使用仅缓冲样本为所有通道拍摄背景图像。将所有图像另存为 TIF 文件。扩散系数的拟合值为每秒1.34平方微米,与基于公式的计算值1.39平方微米/秒非常吻合。
光漂白后的线轮廓和漂白区域的回收曲线分别拟合方程四和五。脂质双层的移动分数代表恢复的漂白群体的比例大于0.9,表明脂质双层良好。肌球蛋白活性诱导收缩性肌动蛋白流,在稳态下形成星状结构,驱动偶联膜组分的局部聚集。
可以使用各种显微镜技术,例如干涉散射显微镜来研究未标记的肌动肌肽网络的动力学,而不会引起任何光损伤,或使用超分辨率荧光显微镜。该技术为有兴趣了解膜蛋白复合物如何与动态肌动蛋白网络相互作用以调节其结构和组成的研究人员铺平了道路。