溶酶体是细胞的垃圾处理系统。溶酶体活动是高度动态的,很难捕获。在这项研究中,我们开发了一种邻近标记蛋白质组学方法来破译活体人类神经元中的溶酶体微环境。
这种方法捕获溶酶体膜蛋白以及与溶酶体和iPSC衍生神经元的稳定和瞬时相互作用。溶酶体功能障碍与各种脑部疾病密切相关。该技术可用于了解各种脑部疾病,并为设计新疗法提供潜在的分子靶点。
要开始邻近标记程序,请在显微镜下观察神经元,以确保它们活着和健康。从培养物中取出半体积培养基与生物素苯酚混合,并在37摄氏度的培养箱中以500微摩尔的终浓度将其加回神经元30分钟。通过将新鲜制备的过氧化氢溶液以一毫摩尔终浓度添加到神经元培养物中来启动标记反应。
孵育一分钟后,吸出培养基并用淬灭缓冲液冲洗培养物三次。倾斜板以吸出所有残留缓冲液。加入冰冷的裂解缓冲液后,将细胞裂解物刮入冷的1.5毫升管中。
在超过 100 瓦的冰冷水浴中超声处理试管 15 分钟,交替循环 40 秒开启和 20 秒关闭。细胞裂解后,以四倍体积的细胞裂解物溶液向样品中加入零下 20 摄氏度的冷丙酮。短暂涡旋并在零下20摄氏度下孵育3小时以沉淀蛋白质并去除残留的生物素苯酚。
将细胞裂解液管以16,500倍G在2摄氏度下离心10分钟,并小心地除去上清液而不干扰蛋白质沉淀。然后,用一毫升丙酮在零下20摄氏度下洗涤沉淀两次,然后离心并除去上清液。接下来,用真空浓缩器干燥蛋白质沉淀一分钟。
加入细胞裂解缓冲液,通过涡旋或超声处理完全溶解沉淀。取20微升等分试样,通过DCA测定法测定总蛋白质浓度。将剩余的细胞溶液储存在零下80摄氏度。
从零下80摄氏度的冰箱中取出蛋白质裂解物样品,并对样品管进行超声处理30秒以快速解冻。涡旋,用台式小型离心机短暂离心,然后将样品管放在冰上。接下来,将250微升链霉亲和素磁珠浆液转移到每个1.5毫升管中。
将这些试管放在磁性架上一分钟,用一毫升2%十二烷基硫酸钠溶液洗涤珠子三次,然后除去残留的缓冲液。根据细胞裂解物总蛋白质浓度和磁珠滴定测定结果,添加250微升链霉亲和素磁珠浆液所需的蛋白质样品的计算量。然后,将细胞裂解缓冲液添加到磁珠裂解物混合物中,总体积为一微升,并在四摄氏度下旋转试管过夜。
第二天,将样品管在台式微量离心机上短暂离心,并将管放在磁性架上一分钟以除去上清液。然后,使用一毫升洗涤缓冲液A在室温下旋转五分钟洗涤珠子两次。依次使用缓冲液B、缓冲液C和缓冲液D在4摄氏度下对每个洗涤缓冲液重复该过程两次。
将试管放在磁性架上一分钟,然后除去上清液。然后,将磁珠重悬于50毫摩尔Tris缓冲液中的100微摩尔5毫摩尔TCEP中,在37摄氏度的热混合器上孵育30分钟,然后在黑暗中加入15毫摩尔IAA30分钟,添加5毫摩尔TCEP5分钟以淬灭残留IAA。在微量离心机上短暂离心样品管,并将管放在磁性架上一分钟以除去上清液。
在 50 毫摩尔 Tris 缓冲液中加入 200 微升 5 毫摩尔 TCEP 以重悬磁珠。加入一微克胰蛋白酶/Lys-C 混合物,在 1, 200 RPM 和 37 摄氏度下 14 小时。14小时后,再加入0.2微克胰蛋白酶/ Lys-C混合物3小时,旋转样品管,并将它们放在磁性架上一分钟。
然后,将肽上清液转移到干净的管中。接下来,用50微升50毫摩尔Tris缓冲液振荡洗涤珠子5分钟,合并肽上清液,并向管中加入30微升10%三氟乙酸,使pH降低至三以下。肽脱盐干燥后。
将肽样品重悬于液相色谱缓冲液中,用于LC-MS分析。将上清液转移到LC样品瓶中,用纳米LC-MS进行分析。在LC-MS方法文件中,添加具有高丰度污染物肽峰(如链霉亲和素、胰蛋白酶和Lys-C)的特定质量和保留时间范围的自定义LC-MS排除列表。
使用蛋白质组学数据分析软件分析 LC-MC 原始数据。包括两个FASTA文库,一个Swiss-Prot Homo sapiens参考数据库,以及一个新建的通用污染物FASTA文库,在UniProt ID中带有污染物前缀。选择具有三个遗漏裂解的胰蛋白酶消化、胱氨酸氨基甲酰甲基化的固定修饰、蛋氨酸氧化的可变修饰和蛋白质末端乙酰化。
对于无标记定量,将肽MS-I峰强度标准化为内源性生物素化羧化酶PCCA,并减少邻近标记实验的变化。将蛋白质组学软件中的蛋白质水平结果导出为 Excel 文件。在进行统计分析之前,去除污染物蛋白质和只有一个PSM或没有定量结果的蛋白质。
iPSC神经元不同时间点的细胞形态说明了三天分化期间的神经突生长。在神经元培养基中切换到聚-L-鸟氨酸包被的板后,神经元在神经元之间形成网络,轴突延伸在两周内成熟后变得更加明显。在荧光成像中,生物素化蛋白的LAMP1顶点活性被链霉亲和素染色,并与神经元中的LAMP1染色共定位。
磁珠滴定测定的结果表明,当增加链霉亲和素微球的量时,未捕获的生物素化蛋白质信号会下降。5 μL 链霉亲和素微球最适合来自内源性 LAMP1 顶点样品的 50 μg 输入蛋白。与单独使用胰蛋白酶相比,使用胰蛋白酶/Lys-C 混合物进行珠子上消化可鉴定出更多的蛋白质和肽,并减少遗漏的裂解。
此外,发现 1 至 1.5 μg 胰蛋白酶/Lys-C 最适合磁珠消化,以获得最多数量的鉴定蛋白质和最低的漏切百分比。已知的溶酶体膜蛋白在LAMP1顶点与无顶点对照组相比增加。内源性生物素化蛋白质非常丰富,但保持不变。
GO项和蛋白质网络分析表明,LAMP1顶点蛋白质组学中富集了与内溶酶体运输和运输相关的稳定溶酶体膜蛋白和瞬时溶酶体相互作用物。顶点接近标记必须在一分钟内淬灭,以减少氧化应激和实验变化。我们最近开发了一种可切割的生物素方法,使我们能够富集生物素化的蛋白质。
这种方法与我们目前的方法相结合,将使我们能够减少链霉亲和素和内源性生物素化蛋白质的干扰。我们可以将这种方法应用于具有导致脑部疾病的遗传变异的野生型和突变型神经元。这可以帮助我们了解基因突变如何以及为什么影响人类神经元中的溶酶体微环境。