Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The presented method describes the generation of a CRISPR-mediated gene knockout in the human embryonic stem cell (hESC) line H9, which stably expresses sgRNAs targeting the L2HGDH gene using a highly efficient lentiviral-mediated gene delivery system.

Abstract

The CRISPR-Cas9 system for genome editing has revolutionized gene function studies in mammalian cells, including stem cells. However, the practical application of this technique, particularly in pluripotent stem cells, presents certain challenges, such as being time- and labor-intensive and having low editing efficiency. Here, we describe the generation of a CRISPR-mediated gene knockout in a human embryonic stem cell (hESC) line stably expressing sgRNAs for the L2HGDH gene, using a highly efficient and stable lentiviral-mediated gene delivery system. The sgRNAs targeting exon 1 of the L2HGDH gene were chemically synthesized and cloned into the lentiCRISPR v2-puro vector, which combines the constitutive expression of sgRNAs with Cas9 in a highly efficient single-vector system to achieve higher lentiviral titers for hESC infection and stable selection using puromycin. Puromycin-selected cells were further expanded, and single-cell clones were obtained using the limited dilution method. The single clones were expanded, and several homozygous knockout clones for the L2HGDH gene were obtained, as confirmed by a 100% reduction in L2HGDH expression using Western blot analysis. Furthermore, using MSBSP-PCR, the CRISPR mutation site was mapped upstream of the PAM recognition sequence of Cas9 in the selected homozygous clones. Sanger sequencing was performed to analyze the exact insertions/deletions, and functional characterization of the clones was conducted. This method produced a significantly higher percentage of homozygous deletions compared to previously reported non-viral gene delivery methods. Although this report focuses on the L2HGDH gene, this robust and cost-effective approach can be used to create homozygous knockouts for other genes in pluripotent stem cells for gene function studies.

Introduction

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are stem cells with the potential to differentiate into all cell types in the body. These cells serve as valuable tools for studying human development, as well as for understanding the underlying mechanisms of various diseases, thus offering tremendous promise for regenerative medicine, disease modeling, and drug discovery. Such studies involve investigating how specific genes contribute to the development, functioning, and regulation of organisms1,2.

Various techniques and approaches are employed to decip....

Protocol

The details of the gene sequences, reagents, and equipment used in this study are listed in the Table of Materials.

1. Single guide RNA (sgRNA) design, cloning, and lentiviral vector production

NOTE: Two different sgRNA sequences targeting the exon 1 of the L2HGDH gene, both adapted from Qiu et al.6with PAM sites of AGG and TGG for sequences 1 and 2, respectively, are used. Both sgRNAs were 20 bp in le.......

Representative Results

Cloning of L2HGDH sgRNAs in lentiCRISPRv2 puro
lentiCRISPRv2 puro vector was commercially obtained (see Table of Materials) and digested with BsmB1, which resulted in the release of a 1.8 Kb stuffer fragment. As shown in Figure 2A, a complete digestion of the vector was observed. For each construct, six clones were screened for the presence or absence of insert using reverse sgRNA sequence as a primer and a forward primer (U6-459F) from within the vect.......

Discussion

This study has standardized a method that enables highly efficient and cost-effective gene deletions in hESCs through CRISPR-Cas9 technology. This method successfully achieved homozygous deletion of the L2HGDH gene in hESCs within 3-4 weeks, starting from hESC infection to single-cell clonal selection and propagation (Table 1). Although CRISPR-Cas9-mediated gene manipulations can be achieved by transient transfections in most cells, this becomes challenging in stem cells due to poor transfection efficien.......

Acknowledgements

This work was supported by research grants from United Arab Emirates University (UAEU) - grant #12M105, grant #12R167 (Zayed Center for Health Sciences), 21R105 (Zayed Bin Sultan Charitable and Humanitarian Foundation (ZCHF)), and ASPIRE, the technology program management pillar of Abu Dhabi's Advanced Technology Research Council (ATRC), via the ASPIRE Precision Medicine Research Institute Abu Dhabi (ASPIREPMRIAD) award grant number VRI-20-10.

....

Materials

NameCompanyCatalog NumberComments
2-MERCAPTOETHANOL Invitrogen31350010
38.5 mL, Sterile + Certified Free Open-Top
Thinwall Ultra-Clear Tubes
Beckman CoulterC14292
AccutaseStem cell technologies7920
bFGF Recombinant humanInvitrogenPHG0261
Brachyury Rabbit mAbAbclonalA5078
BsmBI-v2NEBR0739S
chir99021Tocris4423/10
Corning Matrigel Basement Membrane Matrix, LDEV-freeCorning354234
CyclopamineStem cell technologies72074
DMEM mediaInvitrogen11995073
DMEM NUTRIENT MIX F12 Invitrogen11320033
DPBS w/o: Ca and MgPAN BiotechP04-36500
Fetal bovie serumInvitrogen10270106
FoxA2/HNF3β CST8186
GAPDH (14C10) Rabbit mAb AntibodyCST2118S
Gentle Cell Dissociation ReagentStem cell technologies7174
HyClone Non Essential Amino Acids (NEAA) 100x SolutionGE healthcareSH30238.01
Ki-67 (D3B5) Rabbit mAbCST9129
KnockOut Serum ReplacementInvitrogen10828028
L GLUTAMINE, 100xInvitrogen2924190090
L2H-BMSBSP-F1MacrogenCGTGCGGGTTCGCGTCTGGG
L2HGDH Polyclonal antibodyProteintech15707-1-AP
L2HGDH-SgRNA1-FMacrogenCACCGCGTGCGG
GTTCGCGTCTGGG
L2HGDH-SgRNA1-RMacrogenAAACCCCAGACGC
GAACCCGCACGC
L2HGDH-SgRNA2-FMacrogenCACCGCCCGCGG
GCTTTTCGCCGG
L2HGDH-SgRNA2-RMacrogenAAACCCGGCGAA
AAGCCCGCGGGC
L2H-SeqF1MacrogenGCTAAAGAGCGC
GGGTCCTCGG
L2H-SeqR1MacrogenGTGGACGGGTTG
TTCAAAGCCAGAG
L2H-UMSBSP-R1MacrogenGTGGACGGGTTG
TTCAAAGCCAGAG
LentiCRISPRv2Addgene52961
mTesR1 complete mediaStem cell technologies85850
Nanog AntibodyCST3580
NEUROBASAL MEDIUM 1x CTSInvitrogenA1371201
Neuropan 2 Supplement 100xPAN BiotechP07-11050
Neuropan 27 Supplement 50xPAN BiotechP07-07200
Oct-4 AntibodyCST2750
Pax6 (D3A9V) XP Rabbit mAbCST60433
PENICILLIN STREPTOMYCIN SOLInvitrogen15140122
pMD2.GAddgene12259
Polybrene infection reagentSigmaTR1003- G
Polyethylenimine, branchedSigma408727
psPAX2.0Addgene12260
PuromycinInvitrogenA1113802
qPCR Lentivirus Titer KitAbmLV900
Rock inhibitor Y-27632
dihydrochloride 
Tocris1254
SB 431542Tocris1614/10
Sox2 AntibodyCST2748
SucroseSigma57-50-1
TRYPSIN .05% EDTA Invitrogen25300062
U6-459FMacrogenGAGGGCCTATT
TCCCATGATTC
Wizard Genomic DNA Purification Kit PromegaA1120
XAV 939Tocris3748/10

References

  1. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  2. Jiang, F., Doudna, J. A. CRISPR-Cas9 structures and mechanisms. An....

Explore More Articles

CRISPR Cas9Gene DeletionGene KnockoutHuman Pluripotent Stem CellsHESCL2HGDH GeneLentiviral mediated DeliverySgRNAsPuromycin SelectionHomozygous ClonesWestern Blot AnalysisMSBSP PCRSanger SequencingGene Function Studies

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved