Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll stellt ein physiologisch relevantes Tumor-on-a-Chip-Modell vor, um Hochdurchsatz-Grundlagen- und translationale Krebsforschung am Menschen durchzuführen und das Arzneimittel-Screening, die Krankheitsmodellierung und Ansätze der personalisierten Medizin mit einer Beschreibung von Lade-, Wartungs- und Bewertungsverfahren voranzutreiben.

Zusammenfassung

Der Mangel an validierten Krebsmodellen, die die Tumormikroumgebung solider Krebsarten in vitro rekapitulieren, stellt nach wie vor einen erheblichen Engpass für die präklinische Krebsforschung und die therapeutische Entwicklung dar. Um dieses Problem zu lösen, haben wir den vaskularisierten Mikrotumor (VMT) oder Tumorchip entwickelt, ein mikrophysiologisches System, das die komplexe Mikroumgebung des menschlichen Tumors realistisch modelliert. Die VMT bildet sich de novo innerhalb einer mikrofluidischen Plattform durch Co-Kultur mehrerer humaner Zelltypen unter dynamischen, physiologischen Strömungsbedingungen. Dieses Gewebe-Engineering-Mikrotumor-Konstrukt enthält ein lebendes, durchblutetes Gefäßnetzwerk, das die wachsende Tumormasse genauso unterstützt, wie es neu gebildete Gefäße in vivo tun. Wichtig ist, dass Medikamente und Immunzellen die Endothelschicht überwinden müssen, um den Tumor zu erreichen, wodurch physiologische Barrieren für die therapeutische Verabreichung und Wirksamkeit in vivo modelliert werden. Da die VMT-Plattform optisch transparent ist, kann eine hochauflösende Bildgebung dynamischer Prozesse wie Immunzellextravasation und Metastasierung mit direkter Visualisierung von fluoreszenzmarkierten Zellen innerhalb des Gewebes erreicht werden. Darüber hinaus behält die VMT in vivo die Tumorheterogenität, die Genexpressionssignaturen und das Ansprechen auf Medikamente bei. Praktisch jeder Tumortyp kann an die Plattform angepasst werden, und Primärzellen aus frischem chirurgischem Gewebe wachsen und sprechen auf die medikamentöse Behandlung in der VMT an, was den Weg zu einer wirklich personalisierten Medizin ebnet. Hier werden die Methoden zur Etablierung des VMT und dessen Nutzung für die onkologische Forschung skizziert. Dieser innovative Ansatz eröffnet neue Möglichkeiten für die Untersuchung von Tumoren und Arzneimittelreaktionen und gibt Forschern ein leistungsfähiges Werkzeug an die Hand, um die Krebsforschung voranzutreiben.

Einleitung

Krebs ist nach wie vor ein großes Gesundheitsproblem weltweit und die zweithäufigste Todesursache in den Vereinigten Staaten. Allein für das Jahr 2023 rechnet das National Center for Health Statistics mit mehr als 1,9 Millionen neuen Krebsfällen und über 600.000 Krebstodesfällen in den USA1, was den dringenden Bedarf an wirksamen Behandlungsansätzen unterstreicht. Derzeit erhalten jedoch nur 5,1 % der Krebstherapeutika, die sich in klinischen Studien befinden, letztendlich eine FDA-Zulassung. Das Scheitern vielversprechender Kandidaten, klinische Studien erfolgreich zu durchlaufen, kann teilweise auf die Verwendung nicht-physiologischer Modells....

Protokoll

1. Design und Herstellung

  1. Geräte-Design
    1. Für die Herstellung von mikrofluidischen Geräten wird eine SU-8-Form mit einer 200-μm-Schicht aus SU-8 hergestellt, die auf einen Si-Wafer aufgetragen wird (RCA-1 gereinigt und mit 2 % Fluorwasserstoff (HF) behandelt), gefolgt von einem Photolithographieschritt mit einer einzigen Maske, wie zuvor beschrieben 8,9.
    2. Gießen Sie eine 4 mm dicke Polydimethylsiloxan (PDMS)-Replik aus der SU-8-Form, um eine langlebige Polyurethanform für nachgelagerte Fertigungsschritte zu erzeugen. Es können verschiedene Design-Iterationen verwendet ....

Repräsentative Ergebnisse

Gemäß den hier beschriebenen Protokollen wurden VMOs und VMTs unter Verwendung von kommerziell erworbenen EC-, NHLF- und für VMT der triple-negativen Brustkrebszelllinie MDA-MB-231 etabliert. Etablierte VMOs wurden auch mit Krebszellen durchblutet, um die Metastasierung nachzuahmen. In jedem Modell bildet sich an Tag 5 der Co-Kultur ein vaskuläres Netzwerk als Reaktion auf die schwerkraftgetriebene Strömung durch die Gewebekammer selbst und dient als Kanal für die In-vivo-artige Abgabe von Nährstoffen, Th.......

Diskussion

Fast jedes Gewebe im Körper erhält Nährstoffe und Sauerstoff über das Gefäßsystem, was es zu einer kritischen Komponente für eine realistische Krankheitsmodellierung und ein Arzneimittelscreening in vitro macht. Darüber hinaus werden verschiedene Malignome und Krankheitszustände durch vaskuläre endotheliale Dysfunktion und Hyperpermeabilität definiert3. Bemerkenswert ist, dass bei Krebs das tumorassoziierte Gefäßsystem oft schlecht durchblutet, gestört und undicht ist, was a.......

Offenlegungen

CCWH ist an Aracari Biosciences, Inc. beteiligt, das eine Version der in diesem Artikel beschriebenen Technologie vermarktet. Die Bedingungen dieser Vereinbarung wurden von der University of California, Irvine, in Übereinstimmung mit ihren Richtlinien zu Interessenkonflikten geprüft und genehmigt. Es bestehen keine weiteren Interessenkonflikte.

Danksagungen

Wir danken den Mitgliedern des Labors von Dr. Christopher Hughes für ihren wertvollen Beitrag zu den beschriebenen Verfahren sowie unseren Mitarbeitern im Labor von Dr. Abraham Lee für ihre Unterstützung bei der Entwicklung und Herstellung der Plattform. Diese Arbeit wurde durch folgende Zuschüsse unterstützt: UG3/UH3 TR002137, R61/R33 HL154307, 1R01CA244571, 1R01 HL149748, U54 CA217378 (CCWH) und TL1 TR001415 und W81XWH2110393 (SJH).

....

Materialien

NameCompanyCatalog NumberComments
Fabrication
(3-Mercaptopropyl)trimethoxysilane, 95% Sigma-Aldrich175617-100G
Greiner Bio-One μClear Bottom 96-well Polystyrene MicroplatesGreiner Bio-One655096
Methanol ≥99.8% ACSVWR Chemicals BDHBDH1135-1LP
MILTEX Sterile Disposable Biopsy Punch with Plunger, 1mm diameter,Integra Miltex33-31AA-P/25
PDMS membranePAX IndustriesHT-6240
Plasma Cleaner PDC-001Harrick PlasmaN/A
Smooth-Cast 385Smooth-OnN/A
SP Bel-Art Lab Companion Clear Polycarbonate Cabinet Style Vacuum DesiccatorBel-ArtF42400-4031
Standard Lids with Condensation Rings, 96-well plateVWR82050-827
SYLGARD 184 Silicone Elastomer Kit (PDMS)Dow4019862
Cell culture/Loading
BioTek Lionheart FX Automated MicroscopeAgilent CYT5MFAW
CELLvo Human Endothelial Progenitor CellsStemBioSysN/A
Collagen I, rat tailEnzo Life Sciences
Collagenase from Clostridium histolyticum (type 4)Sigma-AldrichC5138
Corning Hank’s Balanced Salt Solution, 1X without calcium and magnesiumCorning21-021-CV
Corning DMEM with L-Glutamine, 4.5g/L Glucose and Sodium PyruvateCorning10013CV
DAPISigma-AldrichD9542
DPBS, no calcium, no magnesiumGibco14190144
EGM-2 Endothelial Cell Growth Medium-2 BulletKitLonzaCC-3162
Fibrinogen from bovine plasmaNeta ScientificSIAL-341573
Fibronectin human plasmaSigma-AldrichF0895
Fluorescein isothiocyanate–dextran (70kDa)Sigma-AldrichFD70S-1G
Gelatin from porcine skinSigma-AldrichG1890
Hyaluronidase from sheep testes (type 4)Sigma-AldrichH6254
Laminin Mouse ProteinGibco23017015
Leica TCS SP8LeicaN/A
MDA-MB-231ATCCHTB-26
NHLF – Normal Human Lung FibroblastsLonzaCC-2512
Nikon Eclipse TiNikonN/A
Paraformaldehyde 4% in 0.1M Phosphate BufferSaline, pH 7.4Electron Microscopy Sciences 15735-90-1L
PBMCs - Peripheral blood mononuclear cellsLonzaCC-2702
PBS, pH 7.4Gibco10010049
Premium Grade Fetal Bovine Serum (FBS), Heat InactivatedAvantor Seradigm97068-091
ProLong Gold Antifade MountantInvitrogenP10144
Quick-RNA Microprep KitZymo ResearchR1051
Thrombin from bovine plasmaSigma-AldrichT4648
Triton X-100 (Electrophoresis),Fisher BioReagentsBP151-100
TrypLE Express Enzyme (1X), phenol redGibco12605028
Trypsin-EDTA (0.05%), phenol redGibco25300062
VasculifeLifeline Cell TechnologyLL-0003

Referenzen

  1. Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. Cancer statistics, 2023. CA Cancer J Clin. 73 (1), 17-48 (2023).
  2. Hachey, S. J., Hughes, C. C. W. Applications of tumor chip technology. Lab Chip. 18 (19), 2893-2912 (2018).
  3. Ewald, M.....

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Vaskularisiertes MikrotumormodellKrebsforschungTumormikroumgebungSolide KrebserkrankungenPr klinische KrebsforschungTherapeutische EntwicklungTumorchipMikrophysiologisches SystemMenschliche ZelltypenMikrofluidische Plattformperfundiertes Gef netzwerkEndothelschichttherapeutische VerabreichungImmunzellextravasationMetastasenfluoreszenzmarkierte ZellenTumorheterogenit tGenexpressionssignaturenArzneimittelansprechenPersonalisierte Medizin

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten