Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll beschreibt einen Ansatz zur Durchführung von Kalzium-Bildgebung in virusinfizierten menschlichen Darmorganoiden und bietet einen Ansatz für die Analyse.

Zusammenfassung

Die Kalziumsignalisierung ist ein integraler Regulator fast jedes Gewebes. Im Darmepithel ist Kalzium an der Regulierung der sekretorischen Aktivität, der Aktindynamik, der Entzündungsreaktionen, der Stammzellproliferation und vieler anderer nicht charakterisierter zellulärer Funktionen beteiligt. Daher kann die Kartierung der Kalzium-Signaldynamik im Darmepithel Einblicke in homöostatische zelluläre Prozesse geben und einzigartige Reaktionen auf verschiedene Reize aufdecken. Humane intestinale Organoide (HIOs) sind ein vom Menschen abgeleitetes Hochdurchsatzmodell zur Untersuchung des Darmepithels und stellen somit ein nützliches System zur Untersuchung der Kalziumdynamik dar. In diesem Artikel wird ein Protokoll beschrieben, um HIOs mit genetisch kodierten Kalziumindikatoren (GECIs) stabil zu transduzieren, Live-Fluoreszenzmikroskopie durchzuführen und Bilddaten zu analysieren, um Kalziumsignale aussagekräftig zu charakterisieren. Als repräsentatives Beispiel wurden 3-dimensionale HIOs mit Lentivirus transduziert, um GCaMP6s, eine grün fluoreszierende Protein-basierte zytosolische GECI, stabil zu exprimieren. Die entwickelten HIOs wurden dann in einer einzelligen Suspension dispergiert und als Monolagen ausgesät. Nach der Differenzierung wurden die HIO-Monolayer mit Rotaviren infiziert und/oder mit Medikamenten behandelt, von denen bekannt ist, dass sie eine Kalziumreaktion stimulieren. Ein Epifluoreszenzmikroskop, das mit einer temperaturkontrollierten, befeuchteten Live-Imaging-Kammer ausgestattet war, ermöglichte die Langzeitbildgebung von infizierten oder medikamentös behandelten Monoschichten. Im Anschluss an die Bildgebung wurden die aufgenommenen Bilder mit der frei verfügbaren Analysesoftware ImageJ analysiert. Insgesamt etabliert diese Arbeit eine anpassungsfähige Pipeline zur Charakterisierung zellulärer Signaltransduktion in HIOs.

Einleitung

Kalzium ist ein weit verbreiteter sekundärer Botenstoff, der eine entscheidende Rolle bei der Regulierung der Zellphysiologie spielt1. Aufgrund seiner starken Ladung, seiner geringen Größe und seiner hohen Löslichkeit unter physiologischen Bedingungen ist Kalzium ein idealer Manipulator der Proteinkonformation. Dies macht Kalzium zu einem leistungsstarken Mittel, um elektrochemische Signale in enzymatische, transkriptionelle oder posttranskriptionelle Veränderungen umzuwandeln. Die strengen Kalziumkonzentrationsgradienten über das endoplasmatische Retikulum (ER) und die Plasmamembranen erzeugen eine hohe Antriebskraft, die schnelle Änderungen d....

Protokoll

Alle menschlichen Darmorganoide (HIOs), die in diesem Protokoll und den repräsentativen Experimenten verwendet wurden, wurden aus menschlichem Gewebe gewonnen, das vom Texas Medical Center Digestive Diseases Enteroid Core gewonnen und gepflegt wurde. Alle Proben wurden in Übereinstimmung mit einem Protokoll entnommen, das vom Institutional Review Board am Baylor College of Medicine genehmigt wurde.

1. Vorbereitung von Materialien und Reagenzien

  1. Für die Organoid-Wartung entnehmen Sie mit Zellkulturen behandelte 24-Well-Platten, Basalmembranmatrix (BMM), konische 15-ml-Röhrchen und 1,5-ml-konische Röhrchen.
    1. U....

Repräsentative Ergebnisse

Abbildung 1A zeigt eine BMM-Kuppel mit 3-dimensionalen humanen Darmorganoiden, die transduziert wurden, um GCaMP6s stabil zu exprimieren. Abbildung 1B zeigt die gleiche Linie von Organoiden, die 24, 48 und 72 Stunden nach der Aussaat als Monoschicht neu beschichtet wurden. Um die Funktion von GCaMP6s zu validieren, wurde die Monoschicht alle 2 s für 4 min durch Fluoreszenzmikroskopie abgebildet und nach ~20 s 100 nM ADP zu den Medien hinzugefügt. ADP löst ein.......

Diskussion

Veränderungen des zytosolischenCa2+-Spiegels können sowohl Ursache als auch Wirkung von Pathologien innerhalb des Epithels sein 10,16,17. Ein Anstieg des zytosolischen Kalziums kann die Sekretion über die Aktivierung des kalziumabhängigen Chloridkanals direkt antreiben TMEM16A18,19. Die Aktivierung von TMEM16A als Reaktion auf Ca2+ ermöglicht d.......

Offenlegungen

Die Autoren haben keine konkurrierenden finanziellen Interessen offenzulegen.

Danksagungen

Diese Arbeit wurde durch Zuschüsse R01DK115507 und R01AI158683 (PI: J. M. Hyser) der National Institutes of Health (NIH) unterstützt. Die Praktikanten wurden von NIH Grants F30DK131828 (PI: J.T. Gebert), F31DK132942 (PI: F. J. Scribano) und F32DK130288 (PI: K.A. Engevik) unterstützt. Wir danken dem Texas Medical Center Digestive Diseases Enteroid Core für die Bereitstellung der organoiden Erhaltungsmedien.

....

Materialien

NameCompanyCatalog NumberComments
Advanced DMEM F12Gibco12634028
[Leu15]-Gastrin ISigma-AldrichG9145
0.05% Trypsin EDTA Gibco 25300054
0.05% Trypsin EDTA Gibco 25300054
1.5mL microcentrifuge tubesFisherbrand5408137
15mL conical tubesThermofisher Scientific0553859A
16% formaldehydeThermofisher Scientific28906
1M HEPESGibco15630080
1M HEPESGibco15630080
1X PBSCorning 21-040-CV
25 gauge needleThermofisher Scientific1482113D
A-83-01Tocris2939
ADPSigma-Aldrich A2754
Advanced DMEM F12Gibco12634028
Antibiotic-antimycocytic Gibco15240062
Antibiotic-antimycotic Gibco15240062
B27 SupplementGibco17504-044
Bovine serum albuminFisherScientific BP1600100
CellView Cell Culture Slide, PS, 75/25 MM, Glass Bottom, 10 compartmentsGreiner543979
Collagen IVSigma AldrichC5533
DAPIThermofisher ScientificD1306
EDTACorning46-034-CI
Fetal bovine serum Corning 35010CV
Fetal bovine serum Corning 35010CV
FluorobriteGibcoA1896701
GlutaMAX Gibco 35050079
GlutaMAX Gibco 35050079
Human epidermal growth factorProteinTechHZ-1326
LentivirusVectorBuilder(variable)
MatrigelBD Biosceicen356231/CB40230C
N2 SupplementGibco17502-048
N-acetylcysteineSigma-AldrichA9165-5G
NH4ClSigma-Aldrich A9434
NicotinamideSigma-AldrichN0636
Nunc Cell Culture Treated 24-well PlatesThermofisher Scientific142475
PolybreneMilliporeSigmaTR1003G
SB202190Sigma-AldrichS70767
Triton X-100Fisher BioReagentsBP151100
TrypLE Express Enzyme, no phenol redThermofisher Scientific12604013
TrypsinWorthington BiochemicalNC9811754
Y-27632Tocris1254

Referenzen

  1. Bootman, M. D., Bultynck, G. Fundamentals of cellular calcium signaling: A primer. Cold Spring Harb Perspect Biol. 12 (1), a038802 (2020).
  2. Clapham, D. E. Calcium signaling. Cell. 131 (6), 1047-1058 (2007).
  3. Danese, A., et al.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Diesen Monat in JoVEAusgabe 203

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten