Protocol describing the application of a flow cell system for growing and analyzing microbial biofilms for Confocal Laser Scanning Microscopy (CLSM).
The Spared Nerve Injury animal model is described here as a mouse model of peripheral neuropathic pain following partial denervation of the sciatic nerve by lesioning the tibial and common peroneal nerve branches, leaving the remaining sural nerve intact. Behavioral modification resulting from mechanical allodynia is quantified by von Frey filaments.
Fluorescent in situ hybridization (FISH) to identify mRNA transcripts in individual cells allows analysis of polygenic activity such as the simultaneous transcription of more than one member of the var multigene family in Plasmodium falciparum infected erythrocytes 1. The technique is adaptable and can be used on different types of genes, cells and organisms.
A technique called Comprehensive Microarray Polymer Profiling (CoMPP) for the characterisation of plant cell wall glycans is described. This method combines the specificity of monoclonal antibodies directed to defined glycan-epitopes with a miniature microarray analytical platform allowing screening of glycan occurrence in a broad range of biological contexts.
The three-dimensional culture method described in this protocol recapitulates pancreas development from dispersed embryonic mouse pancreas progenitors, including their substantial expansion, differentiation and morphogenesis into a branched organ. This method is amenable to imaging, functional interference and manipulation of the niche.
Though a known model, the guinea pig currently represents a niche in experimental animal sciences and limited data is available on the execution of most procedures. Here we present four different approaches to non-terminal in vivo blood sampling techniques in either conscious or anaesthetized guinea pigs.
The aim of the present study was to assess changes in transmission at the corticomotoneuronal synapses in humans after repetitive transcranial magnetic stimulation. For this purpose, an electrophysiological method is introduced that allows assessment of pathway specific corticospinal transmission, i.e. differentiation of fast, direct corticospinal pathways from polysynaptic connections.
This protocol describes an easy method to extract and fractionate transcripts from plant tissues on the basis of the number of bound ribosomes. It allows a global estimate of translation activity and the determination of the translational status of specific mRNAs.
This paper presents a sensitive method called Circle-Seq for purifying extrachromosomal circular DNA (eccDNA). The method encompasses column purification, removal of remaining linear chromosomal DNA, rolling-circle amplification and high-throughput sequencing. Circle-Seq is applicable to genome-scale screening of eukaryotic eccDNA and studying genome instability and copy-number variation.
A high-throughput assay for enzyme screening is described. This multiplexed ready-to-use assay kit comprises of pre-chosen Chromogenic Polymer Hydrogel (CPH) substrates and complex Insoluble Chromogenic Biomass (ICB) substrates. Target enzymes are polysaccharide degrading endo-enzymes and proteases.
The segmentation clock drives oscillatory gene expression across the pre-somitic mesoderm (PSM). Dynamic Notch activity is key to this process. We use imaging and computational analyses to extract temporal dynamics from spatial expression data to demonstrate that Delta ligand and Notch receptor expression oscillate in the vertebrate PSM.
Here, we present a stereological method, the optical fractionator, used to quantify the formation of new neurons, and their survival, in the rat hippocampus following electroconvulsive stimulation. When correctly implemented, the sensitivity and efficiency of stereological methods ensures accurate estimates with a fixed and predetermined precision.
This protocol describes a noninvasive technique for the sampling of undisturbed mucosal lining fluid from the upper airways. It can be used to perform the quantification of in vivo levels of protein mediators, such as cytokines and chemokines, in subjects of all ages.
Here, the power of a transposon-mediated random insertion of a non-coding DNA element was used to resolve its optimal chromosomal position.
Here, we present a reliable and easy assay to measure the glycogen content in cyanobacterial cells. The procedure entails precipitation, selectable depolymerization, and the detection of glucose residues. This method is suitable for both wildtype and genetically engineered strains and can facilitate the metabolic engineering of cyanobacteria.
Synaptosomal dopamine uptake and high-performance liquid chromatography analysis represent experimental tools to investigate dopamine homeostasis in mice by assessing the function of the dopamine transporter and levels of dopamine in striatal tissue, respectively. Here we present protocols to measure dopamine tissue content and assess the functionality of the dopamine transporter.
Axonal excitability techniques provide a powerful tool to examine pathophysiology and biophysical changes that precede irreversible degenerative events. This manuscript demonstrates the use of these techniques on the ulnar nerve of anesthetized rats.
Here we present a method for directly measuring transfer RNA charging levels from purified Escherichia coli RNA as well as a way to compare relative levels of transfer RNA, or any other short RNA, across different samples based on the addition of spike-in cells expressing a reference gene.
Mitophagy, the process of clearing damaged mitochondria, is necessary for mitochondrial homeostasis and health maintenance. This article presents some of the latest mitophagy detection methods in human cells, Caenorhabditis elegans, and mice.
Preparing and testing Pt/C fuel cell catalysts is subject to continuous discussion in the scientific community with respect to reproducibility and best practice. With the presented work, we intend to present a step-by-step tutorial to make and test Pt/C catalysts, which can serve as benchmark for novel catalyst systems.
This manuscript describes the protocol for Bimolecular Complementation Affinity Purification (BiCAP). This novel method facilitates the specific isolation and downstream proteomic characterization of any two interacting proteins, while excluding un-complexed individual proteins as well as complexes formed with competing binding partners.
Here we describe a protocol to perform cisterna magna cannulation (CMc), a minimally invasive way to deliver tracers, substrates and signaling molecules into the cerebrospinal fluid (CSF). Combined with different imaging modalities, CMc enables glymphatic system and CSF dynamics assessment, as well as brain-wide delivery of various compounds.
Here, we provide a demonstration of the suction blister cutaneous recall model. The model allows a simple access to study human in vivo adaptive immune responses, for instance in the context of vaccine development.
Here, we present a protocol to allow accurate quantification of mitochondrial DNA (mtDNA) methylation. In this protocol, we describe an enzymatic digestion of DNA with BamHI coupled with a bioinformatic analysis pipeline which can be used to avoid overestimation of mtDNA methylation levels caused by the secondary structure of mtDNA.
We present a visual guide to disease defense behaviors in leaf-cutting ants, with individual clips and accompanying definitions, illustrated in an experimental infection scenario. Our main aim is to help other researchers recognize key defensive behaviors and to provide a common understanding for future research in this field.
Here, we present a powerful and physiological model to study the molecular mechanisms underlying gut hormone secretion and intestinal absorption — the isolated perfused rat small intestine.
The method of autoradiography is routinely used to study binding of radioligands to tissue sections for determination of qualitative or quantitative pharmacology.
Here, we present a protocol to study the molecular mechanism of proton translocation across lipid membranes of single liposomes, using cytochrome bo3 as an example. Combining electrochemistry and fluorescence microscopy, pH changes in the lumen of single vesicles, containing single or multiple enzyme, can be detected and analyzed individually.
Here, two medium-throughput assays for assessment of effects on Ca2+-signaling and acrosome reaction in human sperm are described. These assays can be used to quickly and easily screen large amounts of compounds for effects on Ca2+-signaling and acrosome reaction in human sperm.
Here, we present a protocol to establish important endpoints and proliferative markers of small intestinal injury and compensatory hyperproliferation using a model of chemotherapy-induced mucositis. We demonstrate the detection of proliferating cells using a cell cycle specific marker and using small intestinal weight, crypt depth, and villus height as endpoints.
We present an optimized local ejection procedure using a glass micro-pipette and a fast two-photon hyperstack imaging method, which allows precise measurement of capillary diameter changes and investigation of its regulation in three dimensions.
Here, we present a protocol describing isolation and culturing of cartilage explants from bovine knees. This method provides an easy and accessible tool to describe tissue changes in response to biological stimuli or novel therapeutics targeting the joint.
Here, we present several simple methods for evaluating viability and death in 3D cancer cell spheroids, which mimic the physico-chemical gradients of in vivo tumors much better than the 2D culture. The spheroid model, therefore, allows evaluation of the cancer drug efficacy with improved translation to in vivo conditions.
Transcranial optical imaging allows wide-field imaging of cerebrospinal fluid transport in the cortex of live mice through an intact skull.
We describe the use of a novel, frequency-domain luminescence lifetime camera for mapping 2D O2 distributions with optical sensor foils. The camera system and image analysis procedures are described along with the preparation, calibration and application of sensor foils for visualizing the O2 microenvironment in the rhizosphere of aquatic plants.
Presented here is a protocol to detect macrophage extracellular trap (MET) production in live cell culture using microscopy and fluorescence staining. This protocol can be further extended to examine specific MET protein markers by immunofluorescence staining.
We detail a simple method to produce high-resolution time-lapse movies of Pseudomonas aeruginosa swarms that respond to bacteriophage (phage) and antibiotic stress using a flatbed document scanner. This procedure is a fast and simple method for monitoring swarming dynamics and may be adapted to study the motility and growth of other bacterial species.
Brain capillary pericytes are essential players in the regulation of blood-brain barrier properties and blood flow. This protocol describes how brain capillary pericytes can be isolated, cultured, characterized with respect to cell type and applied for investigations of intracellular calcium signaling with fluorescent probes.
Intact regulation of muscle glucose uptake is important for maintaining whole body glucose homeostasis. This protocol presents assessment of insulin- and contraction-stimulated glucose uptake in isolated and incubated mature skeletal muscle when delineating the impact of various physiological interventions on whole body glucose metabolism.
The overall goal of this protocol is to provide instruction on how to measure the capacity of antibodies present in sera or plasma of individuals, naturally exposed to Plasmodium falciparum infection, to opsonize and induce phagocytosis of the parasite-infected erythrocytes (IEs).
While replication fork collisions with DNA adducts can induce double strand breaks, less is known about the interaction between replisomes and blocking lesions. We have employed the proximity ligation assay to visualize these encounters and to characterize the consequences for replisome composition.
The Differential Radial Capillary Action of Ligand Assay (DRaCALA) can be used to identify small ligand binding proteins of an organism by using an ORFeome library.
Subarachnoid hemorrhage continues to carry a high burden of mortality and morbidity in man. To facilitate further research into the condition and its pathophysiology, a pre-chiasmatic, single injection model is presented.
This is an adapted method for identifying candidate insect colonization factors in a Burkholderia beneficial symbiont. The beetle host is infected with a random mutant library generated via transposon mutagenesis, and library complexity after colonization is compared to a control grown in vitro.
The refined tail vein transection (TVT) bleeding model in anesthetized mice is a sensitive in vivo method for the assessment of hemophilic bleeding. This optimized TVT bleeding model uses blood loss and bleeding time as endpoints, refining other models and avoiding death as an endpoint.
Metabolic adaptation is fundamental for T cells as it dictates differentiation, persistence, and cytotoxicity. Here, an optimized protocol for monitoring mitochondrial respiration in ex vivo cytokine-differentiated human primary T cells is presented.
A modified post-fixation procedure increases the contrast of glycogen particles in tissue. This paper provides a step-by-step protocol describing how to handle the tissue, conduct the imaging, and use stereological methods to obtain unbiased and quantitative data on fiber type-specific subcellular glycogen distribution in skeletal muscle.
The present protocol describes the ex vivo calcitonin gene-related peptide (CGRP) release model and the strategy to quantify the effect of pharmacological agents on the amount of CGRP released from the trigeminovascular system in rodents.
A protocol for mapping the three-dimensional genome organization with nucleosome resolution using the genome-wide chromosome conformation capture method Micro-C-XL is presented here.
This work describes a protocol for the freeform embedded 3D printing of neural stem cells inside self-healing annealable particle-extracellular matrix composites. The protocol enables the programmable patterning of interconnected human neural tissue constructs with high fidelity.
Here, we present a robust method for in situ perfusion of the mouse liver to study the acute and direct regulation of liver metabolism without disturbing the hepatic architecture but in the absence of extra-hepatic factors.
Transesophageal ultrasound (EUS-B) is a safe and feasible procedure using the echoendobronchoscope (EBUS) in esophagus and stomach. After identifying six anatomical landmarks, additional structures can be identified and biopsied, sparing subsequent diagnostic sessions. Thus, EUS-B is an ideal continuation of bronchoscopy and EBUS in diagnosing lung cancer and other diseases.
This test-retest study evaluated leg blood flow measured by the Doppler ultrasound technique during single-leg knee-extensor exercise. The within-day, between-day, and inter-rater reliability of the method was investigated. The approach demonstrated high within-day and acceptable between-day reliability. However, the inter-rater reliability was unacceptably low during rest and at low workloads.
The thermoplasmonic puncture method integrates confocal microscopy, optical tweezers, and gold nanoparticles to study protein responses during plasma membrane repair in cells and giant unilamellar vesicles. The technique enables rapid and localized membrane puncture, allowing the identification of key proteins and their functional roles in the intricate plasma membrane repair machinery.
This protocol presents a method to assess pulmonary alveolar-capillary reserve measured by combined single-breath measurement of the diffusing capacity to carbon monoxide (DL,CO) and nitric oxide (DL,NO) during exercise. Assumptions and recommendations for using the technique during exercise form the foundation of this article.
Tissue-engineered implants for reconstructive surgery rarely progress beyond preclinical trials due to laborious ex vivo culturing, which includes complex and expensive scaffold components. Here, we present a single-staged procedure designed for urinary diversion with an accessible collagen-based tubular scaffold containing autologous micrografts.
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados