Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
The article is based on the creation of an adapted protocol to scan, detect, sort, and identify digitized objects corresponding to benthic river macroinvertebrates using a semi-automatic imaging procedure. This procedure allows the acquisition of the individual size distributions and size metrics of a macroinvertebrate community in about 1 h.
Body size is an important functional trait that can be used as a bioindicator to assess the impacts of perturbations in natural communities. Community size structure responds to biotic and abiotic gradients, including anthropogenic perturbations across taxa and ecosystems. However, the manual measurement of small-bodied organisms such as benthic macroinvertebrates (e.g., >500 µm to a few centimeters long) is time-consuming. To expedite the estimation of community size structure, here, we developed a protocol to semi-automatically measure the individual body size of preserved river macroinvertebrates, which are one of the most commonly used bioindicators for assessing the ecological status of freshwater ecosystems. This protocol is adapted from an existing methodology developed to scan marine mesozooplankton with a scanning system designed for water samples. The protocol consists of three main steps: (1) scanning subsamples (fine and coarse sample size fractions) of river macroinvertebrates and processing the digitized images to individualize each detected object in each image; (2) creating, evaluating, and validating a learning set through artificial intelligence to semi-automatically separate the individual images of macroinvertebrates from detritus and artifacts in the scanned samples; and (3) depicting the size structure of the macroinvertebrate communities. In addition to the protocol, this work includes the calibration results and enumerates several challenges and recommendations to adapt the procedure to macroinvertebrate samples and to consider for further improvements. Overall, the results support the use of the presented scanning system for the automatic body size measurement of river macroinvertebrates and suggest that the depiction of their size spectrum is a valuable tool for the rapid bioassessment of freshwater ecosystems.
Benthic macroinvertebrates are broadly used as bioindicators to determine the ecological status of water bodies1. Most indices to describe macroinvertebrate communities focus on taxonomic metrics. However, new bioassessment tools that integrate body size are encouraged to provide an alternative or complementary perspective to taxonomic approaches2,3.
Body size is considered a metatrait that is related to other vital traits such as metabolism, growth, respiration, and movement4. Furthermore, body size can determine trophic position and ....
NOTE: The protocol described here is based on the system developed by Gorsky et al.27 for marine mesozooplankton. A specific description of the scanner (ZooSCAN), scanning software (VueScan 9x64 [9.5.09]), image processing software (Zooprocess, ImageJ), and automatic identification software (Plankton Identifier) steps can be found in previous references32,33. To best adjust the sizes of the benthic macroinvertebrates with respect to the me.......
Acquisition of digital images of macroinvertebrate samples
Scanning nuances: Ethanol deposition in the scan tray
While testing the system for macroinvertebrates, several scans were of poor quality. A dark saturated area in the background prevented normal processing of the image and the measurement of the individual sizes of the macroinvertebrates (Figure 2). Several reasons have been given for the appearance of saturated areas in the background o.......
The adaptation of the methodology described by Gorsky et al. 2010 for riverine macroinvertebrates allows for high classification accuracy in estimating the community size structure in freshwater macroinvertebrates. The results suggest that the protocol can reduce the time for estimating the individual size structure in a sample to about 1 hour. Thus, the proposed protocol is intended to promote the routine use of macroinvertebrate size spectra as a fast and integrative bioindicator to assess the impact of perturbations i.......
This work was supported by the Spanish Ministry of Science, Innovation and Universities (grant number RTI2018-095363-B-I00). We thank the CERM-UVic-UCC members Èlia Bretxa, Anna Costarrosa, Laia Jiménez, María Isabel González, Marta Jutglar, Francesc Llach, and Núria Sellarès for their work in macroinvertebrate field sampling and laboratory sorting and David Albesa for collaborating in the sample scanning. We finally thank Josep Maria Gili and the Institut de Ciències del Mar (ICM-CSIC) for the use of the laboratory facilities and scanner device.
....Name | Company | Catalog Number | Comments |
Beaker | Labbox | Other containers could be used | |
Dionized water | Icopresa | 8420239600123 | To dilute the ethanol |
Funnel | Vitlab | 41094 | |
Glass vials 8 ml | Labbox | SVSN-C10-195 | 1 vial/subsample |
ImageJ Software | Free access | Version 4.41o/ Image processing software | |
Large frame | Hydroptic | Provided by ZooScan | 24.5 cm x 15.8 cm |
Monalcol 96 (Ethanol 96) | Montplet | 1050JE001 | |
Plankton Identifier Software | Free access | Version 1.2.6/ Automatic identification software | |
Sieve | Cisa | 26852.2 | Nominal aperture 500µ and nominal aperture 0,5 cm |
Tweezers | Bondline | B5SA | Stainless, anti-magnetic, anti-acid |
VueScan 9 x 64 (9.5.09) Software | Hydroptic | Version 9.0.51/ Sacn software | |
Wooden needle | Any plastic or wood needle can be used | ||
Zooprocess Software | Free access | Version 7.14/Image processing software | |
ZooScan | Hydroptic | 54 | Version III/ Scanner |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados