Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Este protocolo describe un método que utiliza una pinza de parche para estudiar las respuestas eléctricas de las neuronas motoras a la estimulación de la médula espinal (SCS) con alta resolución espacio-temporal, lo que puede ayudar a los investigadores a mejorar sus habilidades para separar la médula espinal y mantener la viabilidad celular simultáneamente.
La estimulación de la médula espinal (SCS, por sus siglas en inglés) puede restaurar eficazmente la función locomotora después de una lesión de la médula espinal (SCI, por sus siglas en inglés). Debido a que las neuronas motoras son la unidad final para ejecutar los comportamientos sensoriomotores, el estudio directo de las respuestas eléctricas de las neuronas motoras con SCS puede ayudarnos a comprender la lógica subyacente de la modulación motora espinal. Para registrar simultáneamente diversas características de estímulos y respuestas celulares, un patch-clamp es un buen método para estudiar las características electrofisiológicas a escala de una sola célula. Sin embargo, todavía existen algunas dificultades complejas para lograr este objetivo, incluido el mantenimiento de la viabilidad celular, la separación rápida de la médula espinal de la estructura ósea y el uso del SCS para inducir con éxito potenciales de acción. Aquí, presentamos un protocolo detallado que utiliza patch-clamp para estudiar las respuestas eléctricas de las neuronas motoras al SCS con alta resolución espacio-temporal, lo que puede ayudar a los investigadores a mejorar sus habilidades para separar la médula espinal y mantener la viabilidad celular al mismo tiempo para estudiar sin problemas el mecanismo eléctrico del SCS en la neurona motora y evitar pruebas y errores innecesarios.
La estimulación de la médula espinal (SCS, por sus siglas en inglés) puede restaurar eficazmente la función locomotora después de una lesión de la médula espinal (SCI, por sus siglas en inglés). Andreas Rowald et al. informaron que el SCS permite la función locomotora y troncal de las extremidades inferiores en un solo día1. La exploración del mecanismo biológico del SCS para la recuperación locomotora es un campo de investigación crítico y de tendencia para desarrollar una estrategia de SCS más precisa. Por ejemplo, el equipo de Grégoire Courtine demostró que la interneurona excitadora Vsx2 y las neuronas Hoxa10 en la médula espinal son las ne....
El Comité Institucional de Cuidado y Uso de Animales aprobó todos los experimentos con animales y los estudios se llevaron a cabo de acuerdo con las normas pertinentes de bienestar animal.
1. Preparación de los animales
Gracias al riguroso mantenimiento a baja temperatura durante la operación fina (Figura suplementaria 1, Figura suplementaria 2 y Figura 1), la viabilidad de la celda fue lo suficientemente buena como para realizar registros electrofisiológicos posteriores. Para simular al máximo el escenario clínico, utilizamos la micromanipulación para colocar el cátodo y el ánodo del SCS cerca de la línea media dorsal y el DREZ, respectivamente (Figura 2
La información de movimiento modulada por el SCS finalmente converge a las neuronas motoras. Por lo tanto, tomar las neuronas motoras como objetivo de investigación puede simplificar el diseño del estudio y revelar el mecanismo de neuromodulación del SCS de manera más directa. Para registrar simultáneamente diversas características de estímulos y respuestas celulares, un patch-clamp es un buen método para estudiar las características electrofisiológicas a escala de una sola célula. Sin embargo, todavía exist.......
Ninguno
Este estudio fue financiado por la Fundación Nacional de Ciencias Naturales de China para Jóvenes Académicos (52207254 y 82301657) y el Fondo de Ciencias Postdoctorales de China (2022M711833).
....Name | Company | Catalog Number | Comments |
Adenosine 5’-triphosphate magnesium salt | Sigma | A9187 | |
Ascorbic Acid | Sigma | A4034 | |
CaCl2·2H2O | Sigma | C5080 | |
Choline Chloride | Sigma | C7527 | |
Cover slide tweezers | VETUS | 36A-SA | Clip a slice |
D-Glucose | Sigma | G8270 | |
EGTA | Sigma | E4378 | |
Fine scissors | RWD Life Science | S12006-10 | Cut the diaphragm |
Fluorescence Light Source | Olympus | U-HGLGPS | |
Fluoro-Gold | Fluorochrome | Fluorochrome | Label the motor neuron |
Guanosine 5′-triphosphate sodium salt hydrate | Sigma | G8877 | |
HEPES | Sigma | H3375 | |
infrared CCD camera | Dage-MTI | IR-1000E | |
KCl | Sigma | P5405 | |
K-gluconate | Sigma | P1847 | |
Low melting point agarose | Sigma | A9414 | |
MgSO4·7H2O | Sigma | M2773 | |
Micromanipulator | Sutter Instrument | MP-200 | |
Micropipette puller | Sutter instrument | P1000 | |
Micro-scissors | Jinzhong | wa1020 | Laminectomy |
Microscope for anatomy | Olympus | SZX10 | |
Microscope for ecletrophysiology | Olympus | BX51WI | |
Micro-toothed tweezers | RWD Life Science | F11008-09 | Lift the cut vertebral body |
NaCl | Sigma | S5886 | |
NaH2PO4 | Sigma | S8282 | |
NaHCO3 | Sigma | V900182 | |
Na-Phosphocreatine | Sigma | P7936 | |
Objective lens for ecletrophysiology | Olympus | LUMPLFLN60XW | working distance 2 mm |
Osmometer | Advanced | FISKE 210 | |
Patch-clamp amplifier | Axon | Multiclamp 700B | |
Patch-clamp digitizer | Axon | Digidata 1550B | |
pH meter | Mettler Toledo | FE28 | |
Slice Anchor | Multichannel system | SHD-27H | |
Spinal cord stimulatior | PINS | T901 | |
Toothed tweezer | RWD Life Science | F13030-10 | Lift the xiphoid |
Vibratome | Leica | VT1200S | |
Wide band ultraviolet excitation filter | Olympus | U-MF2 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados