A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a method using a patch-clamp to study the electrical responses of motor neurons to spinal cord stimulation (SCS) with high spatiotemporal resolution, which can help researchers improve their skills in separating the spinal cord and maintaining cell viability simultaneously.
Spinal cord stimulation (SCS) can effectively restore locomotor function after spinal cord injury (SCI). Because the motor neurons are the final unit to execute sensorimotor behaviors, directly studying the electrical responses of motor neurons with SCS can help us understand the underlying logic of spinal motor modulation. To simultaneously record diverse stimulus characteristics and cellular responses, a patch-clamp is a good method to study the electrophysiological characteristics at a single-cell scale. However, there are still some complex difficulties in achieving this goal, including maintaining cell viability, quickly separating the spinal cord from the bony structure, and using the SCS to successfully induce action potentials. Here, we present a detailed protocol using patch-clamp to study the electrical responses of motor neurons to SCS with high spatiotemporal resolution, which can help researcher improve their skills in separating the spinal cord and maintaining the cell viability at the same time to smoothly study the electrical mechanism of SCS on motor neuron and avoid unnecessary trial and mistake.
Spinal cord stimulation (SCS) can effectively restore locomotor function after spinal cord injury (SCI). Andreas Rowald et al. reported that SCS enables lower limb locomotor and trunk function within a single day1. Exploring the biological mechanism of SCS for locomotor recovery is a critical and trending research field for developing a more precise SCS strategy. For example, Grégoire Courtine's team demonstrated that excitatory Vsx2 interneuron and Hoxa10 neurons in the spinal cord are the key neurons to response to SCS, and cell-specific neuromodulation is feasible to restore the rat walking ability after SCI2....
The Institutional Animal Care and Use Committee approved all animal experiments and the studies were conducted in accordance with relevant animal welfare regulations.
1. Animals preparation
Thanks to the rigorous low-temperature maintenance during the fine operation (Supplementary Figure 1, Supplementary Figure 2, and Figure 1), the cell viability was good enough to perform subsequent electrophysiological recordings. To simulate the clinical scenario as much as possible, we used micromanipulation to place the SCS cathode and anode near the dorsal midline and DREZ, respectively (Figure 2), which could initiate neural signal in .......
The movement information modulated by SCS is finally converged to the motor neurons. Therefore, taking the motor neurons as the research target may simplify the study design and reveal the neuromodulation mechanism of SCS more directly. To simultaneously record diverse stimulus characteristics and cellular responses, a patch-clamp is a good method to study the electrophysiological characteristics at a single-cell scale. However, there are still some difficulties, including how to maintain cell viability, how to quickly s.......
This study was funded by the National Natural Science Foundation of China for Young Scholars (52207254 and 82301657) and the China Postdoctoral Science Fund (2022M711833).
....Name | Company | Catalog Number | Comments |
Adenosine 5’-triphosphate magnesium salt | Sigma | A9187 | |
Ascorbic Acid | Sigma | A4034 | |
CaCl2·2H2O | Sigma | C5080 | |
Choline Chloride | Sigma | C7527 | |
Cover slide tweezers | VETUS | 36A-SA | Clip a slice |
D-Glucose | Sigma | G8270 | |
EGTA | Sigma | E4378 | |
Fine scissors | RWD Life Science | S12006-10 | Cut the diaphragm |
Fluorescence Light Source | Olympus | U-HGLGPS | |
Fluoro-Gold | Fluorochrome | Fluorochrome | Label the motor neuron |
Guanosine 5′-triphosphate sodium salt hydrate | Sigma | G8877 | |
HEPES | Sigma | H3375 | |
infrared CCD camera | Dage-MTI | IR-1000E | |
KCl | Sigma | P5405 | |
K-gluconate | Sigma | P1847 | |
Low melting point agarose | Sigma | A9414 | |
MgSO4·7H2O | Sigma | M2773 | |
Micromanipulator | Sutter Instrument | MP-200 | |
Micropipette puller | Sutter instrument | P1000 | |
Micro-scissors | Jinzhong | wa1020 | Laminectomy |
Microscope for anatomy | Olympus | SZX10 | |
Microscope for ecletrophysiology | Olympus | BX51WI | |
Micro-toothed tweezers | RWD Life Science | F11008-09 | Lift the cut vertebral body |
NaCl | Sigma | S5886 | |
NaH2PO4 | Sigma | S8282 | |
NaHCO3 | Sigma | V900182 | |
Na-Phosphocreatine | Sigma | P7936 | |
Objective lens for ecletrophysiology | Olympus | LUMPLFLN60XW | working distance 2 mm |
Osmometer | Advanced | FISKE 210 | |
Patch-clamp amplifier | Axon | Multiclamp 700B | |
Patch-clamp digitizer | Axon | Digidata 1550B | |
pH meter | Mettler Toledo | FE28 | |
Slice Anchor | Multichannel system | SHD-27H | |
Spinal cord stimulatior | PINS | T901 | |
Toothed tweezer | RWD Life Science | F13030-10 | Lift the xiphoid |
Vibratome | Leica | VT1200S | |
Wide band ultraviolet excitation filter | Olympus | U-MF2 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved