Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present the extraction and preparation of polar and semi-polar metabolites from a coral holobiont, as well as separated coral host tissue and Symbiodiniaceae cell fractions, for gas chromatography-mass spectrometry analysis.

Abstract

Gas chromatography-mass spectrometry (GC-MS)-based approaches have proven to be powerful for elucidating the metabolic basis of the cnidarian-dinoflagellate symbiosis and how coral responds to stress (i.e., during temperature-induced bleaching). Steady-state metabolite profiling of the coral holobiont, which comprises the cnidarian host and its associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi, and viruses), has been successfully applied under ambient and stress conditions to characterize the holistic metabolic status of the coral.

However, to answer questions surrounding the symbiotic interactions, it is necessary to analyze the metabolite profiles of the coral host and its algal symbionts independently, which can only be achieved by physical separation and isolation of the tissues, followed by independent extraction and analysis. While the application of metabolomics is relatively new to the coral field, the sustained efforts of research groups have resulted in the development of robust methods for analyzing metabolites in corals, including the separation of the coral host tissue and algal symbionts.

This paper presents a step-by-step guide for holobiont separation and the extraction of metabolites for GC-MS analysis, including key optimization steps for consideration. We demonstrate how, once analyzed independently, the combined metabolite profile of the two fractions (coral and Symbiodiniaceae) is similar to the profile of the whole (holobiont), but by separating the tissues, we can also obtain key information about the metabolism of and interactions between the two partners that cannot be obtained from the whole alone.

Introduction

Metabolites represent the end products of cellular processes, and metabolomics - the study of the suite of metabolites produced by a given organism or ecosystem - can provide a direct measure of organismal functioning1. This is particularly critical for exploring ecosystems, symbiotic interactions, and restoration tools, as the goal of most management strategies is to preserve (or restore) specific ecosystem service functions2. Coral reefs are one aquatic ecosystem that demonstrates the potential value of metabolomics for elucidating symbiotic interactions and linking coral physiological responses to community-level and ....

Protocol

NOTE: The experimental design, sample collection and storage have been described in detail elsewhere2,30,31. Permit approval for the collection of wild corals must be obtained prior to collection and experimentation. The samples here were collected from colonies of Montipora mollis (green colour-morph) imported from Batavia Coral Farms (Geraldton, WA), originally collected from a reef off the Abrohlos Islands (Western A.......

Representative Results

All the data produced during this work are available in the supplementary information.

Host-symbiont separation

figure-representative results-253
Figure 1: Setup and validation of the separation of coral host tissues and Symbiodiniaceae cells. (A) The air gun setup for the removal of coral.......

Discussion

The separation of the host and symbiont is easily and rapidly achievable via simple centrifugation, and the results here show that separating the fractions can provide valuable information indicative of specific holobiont member contributions, which can contribute toward the functional analysis of coral health. In adult corals, lipid synthesis is primarily performed by the resident algal symbiont40, which supplies lipids (e.g., triacylglycerol and phospholipids)41 .......

Acknowledgements

J.L.M. was supported by a UTS Chancellor's Research Fellowship.

....

Materials

NameCompanyCatalog NumberComments
100% LC-grade methanolMerck439193LC grade essential
2 mL microcentrifuge tubes, PPEppendorf30121880Polypropylene provides high resistance to chemicals, mechanical stress and temperature extremes
2030 Shimadzu gas chromatographShimadzuGC-2030
710-1180 µm acid-washed glass beadsMerck
G1152
This size is optimal for breaking the Symbiodiniaceae cells
AOC-6000 Plus Multifunctional autosamplerShimadzuAOC6000
Bradford reagentMerckB6916Any protein colourimetric reagent is acceptable
Compressed air gunOzito6270636Similar design acceptable. Having a fitting to fit a 1 mL tip over is critical.
 DB-5 column with 0.25 mm internal diameter column and 1 µm film thicknessAgilent122-5013
DMFMerckRTC000098
D-Sorbitol-6-13C and/or 13C515N ValineMerck605514/ 600148Either or both internal standards can be added to the methanol.
Flat bottom 96-well plateMerckCLS3614
Glass scintillation vialsMerckV713020 mL, with non-plastic seal
Immunoglogin GMerck56834if not availbe, Bovine Serum Albumin is acceptable
Primerv4
Rv4.1.2
Shimadzu LabSolutions Insight softwarev3.6
Sodium HydroxideMerckS5881Pellets to make 1 M solution
tidyversev1.3.1R package
TissueLyser LTQiagen85600Or similar
TQ8050NX triple quadrupole mass spectrometerShimadzuGCMS-TQ8050 NX
UV-96 well plateGreinerM3812
Whirl-Pak sample bagMerckWPB01018WASample collection bag; Size: big enough to house a ~5 cm coral fragment, but not too big that the water is too spread

References

  1. Bundy, J. G., Davey, M. P., Viant, M. R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 5 (1), 3-21 (2008).
  2. Matthews, J. L., Beale, D. J., Hillyer, K. E., Warden, A. C., Jones, O. A. H., et al.

Explore More Articles

Gas Chromatography mass SpectrometryTargeted MetabolomicsHard Coral SamplesCoral HolobiontSymbiotic MicroorganismsSymbiodiniaceaeMetabolic InteractionsBiomarkersCoral Reef ConservationCoral RestorationVolatile Metabolite Emissions

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados