Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Quick and accurate chemical assays to screen for specific inhibitors are an important tool in the drug development arsenal. Here, we present a scalable acetyl-click chemistry assay to measure the inhibition of HAT1 acetylation activity.

Abstract

HAT1, also known as Histone acetyltransferase 1, plays a crucial role in chromatin synthesis by stabilizing and acetylating nascent H4 before nucleosome assembly. It is required for tumor growth in various systems, making it a potential target for cancer treatment. To facilitate the identification of compounds that can inhibit HAT1 enzymatic activity, we have devised an acetyl-click assay for rapid screening. In this simple assay, we employ recombinant HAT1/Rbap46, which is purified from activated human cells. The method utilizes the acetyl-CoA analog 4-pentynoyl-CoA (4P) in a click-chemistry approach. This involves the enzymatic transfer of an alkyne handle through a HAT1-dependent acylation reaction to a biotinylated H4 N-terminal peptide. The captured peptide is then immobilized on neutravidin plates, followed by click-chemistry functionalization with biotin-azide. Subsequently, streptavidin-peroxidase recruitment is employed to oxidize amplex red, resulting in a quantitative fluorescent output. By introducing chemical inhibitors during the acylation reaction, we can quantify enzymatic inhibition based on a reduction of the fluorescence signal. Importantly, this reaction is scalable, allowing for high throughput screening of potential inhibitors for HAT1 enzymatic activity.

Introduction

Among the numerous eukaryotic acetyltransferases, HAT1 was the initial histone acetyltransferase to be isolated1,2,3. Subsequent investigations have firmly established its pivotal role in chromatin replication, particularly in the synthesis of new nucleosomes during S-phase4. Our research endeavors led to the recognition that HAT1 is highly stimulated by epidermal growth factor (EGF) treatment in mammary cells5. Furthermore, it has come to light that HAT1 is required for rapid cell proliferation and tumor formation in vivo

Protocol

1. Method 1: Producing and purifying recombinant HAT1/Rbap46 complex

  1. Thawing, recovering, and expanding HEK293f cells
    1. Thaw 1-10 million HEK293f mammalian cells26 into 30 mL freestyle 293 expression media in a 100 mL flask. Incubate in 8% CO2 at 37 °C while rotating at 60 rpm.
    2. The next day, count and check cell viability, then adjust rotation speed to 120 rpm. Expand to 300 mL culture in a 1 L flask, maintaining seeding density at .......

Representative Results

Standard curves in duplicate (16 wells) should be included on every plate to ensure proper assay performance. Standard curve data should be set up in table form, with a range of 100% to 0% according to the ratio of Pra-containing peptide to native H4 peptide in solution (Table 1). Amplex red signal will be the highest in 100% pra/0% native H4 peptide wells, and lowest in 0% pra/100% native H4 peptide wells. After fluorescence has been detected and wells are averaged, the resulting standards graph should .......

Discussion

In the past decade, click chemistry became prominent20, enabling the precise design of interacting chemical structures. Within this context, various bioorthogonal covalent connections21 have emerged as promising options for forming complexes in their natural environment. Click chemistry employs pairs of functional groups that exhibit rapid and selective reactions, commonly known as "click reactions." These reactions occur efficiently in environmentally friendly, gen.......

Acknowledgements

We thank George Zheng for providing H4K12CoA. We thank members of the Gruber Lab for helpful discussions and feedback. We thank support from the NIH/NCI (1K08CA245024), CPRIT (RR200090, RP210041), and the V Foundation (V2022-022).

....

Materials

NameCompanyCatalog NumberComments
4P CoACayman Chemical10547Click chemistry co-factor
Amplex RedFisher SciA12222Fluorescence substrate
Biotin-PEG-AzideAlfa AesarJ64996MCClick chemistry
Copper SulfateSigma-aldrich 7758-98-7Click chemistry
DMSOFisher Scientific 67-68-5diluent
DTTAcros Organics03-12-3483reducting agent
ForskolinVWR102987-310Protein expression
Freestyle 293 Expression MediumThermo Fisher12338018Media
Freestyle 293-F cellsThermo FisherR790-07Protein expression
H4-peptide/1-23-GGK-biotinAnaspecAS65097peptide substrate
HEPESSigma-aldrich 7365-45-9EB buffer
Hydrogen peroxide 30% solutionSigma-aldrich Z00183-99-0initiator
M2 FLAG antibody slurryMillipore-SigmaA2220Protein purification
Macrosep 10K Filter (Pall Lab)VWR89131-980Protein purification
Neutravidin PlateThermo Sci15127BSA-pre-blocked
NP40 (IGEPAL)MP Biomedical19859620x buffer
pHEK-293 plasmidTakara Bio3390Protein expression
Phosphate Buffered Saline 10xAlfa Aesar Z00082-33-6wash buffer
Pra peptideGenscriptCustom synthesisbiotinylated
Sodium AscorbateSigma-aldrich 134-03-2Click chemistry
Sodium chlorideSigma-aldrich 7647-14-5EB buffer
Sodium phosphateVWR International7558-80-7buffer
StreptavidinEMD Millipore189730competitor
Streptavidin-HRPCell Signaling3999Senzyme
THPTA ligandFisher Sci1010-500Click chemistry
Tris baseSigma-aldrich 77-86-120x buffer
Triton-X 100VWR International 9002-93-1EB buffer
Tween-20Sigma-aldrich 9005-64-5Wash buffer
UreaSigma-Aldrich57-13-6quencher

References

  1. Kleff, S., et al. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem. 270 (42), 24674-24677 (1995).
  2. Parthun, M. R., Widom, J., Gottschling, D. E.

Explore More Articles

Acetyl Click Chemistry AssayHistone Acetyltransferase 1 HAT1Acetyl Transferase ActivityHigh Throughput ScreeningSmall Molecule InhibitorsPeptide SubstrateEnzymatic AssayChromatin SynthesisTumor GrowthCancer Treatment

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados