Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Here, we present a protocol to generate melanoma patient-derived organoids by culturing disassociated cell suspensions from fresh melanoma tissues. These organoids faithfully recapitulate patient-specific tumors in vitro, offering an innovative approach to exploring tumor immunosuppressive mechanisms, drug screening, drug resistance mechanisms, and cancer surveillance approaches.
With the development of immunotherapy, there is an ongoing need to develop models that can recapitulate the tumor microenvironment of native tumors. While traditional two- and three-dimensional models can offer insights into cancer development and progression, these lack crucial aspects that hinder a faithful mimic of native tumors. An alternative model that has gained a lot of attention is the patient-derived organoid. The development of these organoids recapitulates the complex intercellular communication, tumor microenvironment, and histoarchitecture of tumors. This paper describes the protocol for establishing melanoma patient-derived organoid (MPDO) models. To validate these models, we assessed the immune cell composition, including the expression levels of T-cell activation markers, to confirm the cellular heterogeneity of the organoids. Additionally, to describe the potential utility of MPDOs in cellular therapies, we evaluated the cytotoxic capabilities of treating the organoids with γδ T-cells. In conclusion, the MPDO models offer promising avenues for understanding tumor complexity, validating therapeutic strategies, and potentially advancing personalized treatment.
Conventional 2-D cell culture models are essential tools in cancer research for studying cancer progression and therapy1. These models not only allow for controlled experimental conditions to investigate the molecular and cellular mechanisms underlying cancer development and progression but also provide cost-effective and relatively rapid experimental results. Their usage, however, is restricted due to the limited cellular diversity in the tumor microenvironment (TME), which cannot be recapitulated in a coplanar nature of mono-culture models2. Additionally, cell culture models offer an oversimplified environment compared....
Human melanoma tissues were obtained from patients receiving treatment at the University of Pennsylvania using the tissue collection protocol (UPCC08607) that is approved by the Institutional Review Board of the University of Pennsylvania. All patients have signed informed consent. Following resection of the human melanoma tissues, the tumor tissue is placed in Dulbecco's Modified Eagle Medium (DMEM) and kept at 4 °C until processing (within 6 h). Melanoma patient-derived organoids (MPDOs) were derived from a fr.......
The shape and size of the MPDOs were monitored over time to study their growth dynamics. As seen in Figure 2, during the initial growth period, the organoid size increased substantially throughout the 7 days depicted. Following the observation of MPDO growth dynamics, attention turned to evaluating the immune cell composition to verify the faithful recapitulation of organoids to the original tumors. This assessment, primarily focusing on αβ T cell abundance, provided insights into .......
The emergence of PDOs has addressed multiple limitations posed by other previously established cancer research methods while introducing transformative potential applications in the field. This organoid technology was initially proposed in 2009 by Hans Clevers and colleagues, who were able to successfully establish an intestinal organoid culture system by culturing Lgr5+ stem cells derived from the intestine of mice in a 3D matrix gel containing R-sponsin, EGF, and Noggin factors20. A f.......
This study was funded in part by grants from the R01(CA258113), SPORE (CA261608), and P01 (CA114046). Figure 1 was prepared in BioRender.com.
....Name | Company | Catalog Number | Comments |
2 mL Red Cap Internal Threaded Polypropylene Cryogenic Vial | Corning | 431420 | |
50 mL Polypropylene Conical Tube | Corning | 352070 | |
100 mm TC-treated Cell Culture Dish | Corning | 353003 | |
105 mm Polystyrene Forceps Sterile | Caplugs Evergreen | 222-1121-B1I | |
150 cm2 Cell Culture Flask | Corning | CLS430825 | |
A83-01 | Tocris | 2939 | |
Advanced DMEM/F12 (1x) Reduced Serum Medium (1:1) | Gibco | 12634-010 | |
B-27 Supplement (50x) | Gibco | 17504-044 | |
Brilliant Violet 510 anti-human Perforin Antibody | BioLegend | 308120 | |
Brilliant Violet 605 anti-human Ki-67 Antibody | BioLegend | 350522 | |
Brilliant Violet 650 anti-human CD366 (Tim-3) Antibody | BioLegend | 345028 | |
Brilliant Violet 711 anti-human CD45 Antibody | BioLegend | 304050 | |
Cell Culture Inserts 0.4 µm, 30 mm Diameter | Millipore Sigma | PIHP03050 | |
Cell Staining Buffer | BioLegend | 420201 | |
Cell Strainer 40 µm Nylon | Corning | 352340 | |
Cell Strainer 70 µm Nylon | Corning | 352350 | |
Collagenase, Type IV, powder | Gibco | 17104019 | |
Cultrex Rat Collagen I | Trevigen | 3440-100-01 | |
Culture Plate, PS, 48 wells, TC treated with lid, sterile | Max Scientific | 07-6048 | |
Dimethyl Sulfoxide (DMSO) Hybri-Max | Sigma-Aldrich | D2650 | |
DMEM - high glucose 4.5 mg/mL | Corning | MT10-0130CV | |
Dnase I - Grade II | Millipore Sigma | 10104159001 | |
DPBS, 1% | Corning | 21-031-CV | |
Fetal Bovine Serum, FBS | Corning | MT35-010-CV | |
FITC Annexin V Apoptosis Detection Kit I | BD Biosciences | 556547 | |
Forskolin | Tocris | 1099 | |
Geneticin Selective Antibiotic (G418 Sulfate) (50 mg/mL) | ThermoFisher | 10131035 | |
GlutaMAX Supplement | ThermoFisher | 35050061 | |
Ham's F12 Nutrient Mix | ThermoFisher | 11765054 | |
HEPES (1 M) | Gibco | 15630-080 | |
Hygromycin B (50 mg/mL) | ThermoFisher | 10687010 | |
L-Glutamine 200 mM (100x) | Gibco | 25030-081 | |
L-WRN cell | ATCC | CRL-3276 | |
Matrigel Phenol Free & Growth Fact. Reduced | Corning | 356231 | |
Millex PVDF syringe filter, 0.22 μM | Millipore Sigma | SLGVR33RB | |
N-Acetylcysteine | Sigma-Aldrich | A9165-5G | |
Nicotinamide | Sigma-Aldrich | N0636-100G | |
Nunc TripleFlask Treated Cell Culture Flask | ThermoFisher | 132867 | |
PE/Cyanine5 anti-human CD8a Antibody | BioLegend | 301010 | |
PE-Cy 7 Mouse anti-Human CD279 (PD-1) | BD Biosciences | 561272 | |
Pen Strep | Gibco | 15140-122 | |
Recombinant Human EGF | Peprotech | AF-100-15-1MG | |
Recombinant Human FGF-acidic | Peprotech | 100-17A | |
Sodium Bicarbonate Solution (NaHCO3) (7.5%) | Quality Biological | 118-085-721 | |
Stainless Steel Surgical Blades no. 22 | Integra | 4-322 | |
TrypLE Express | Gibco | 12604-021 |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados