Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
This protocol describes a methodology to transfect Naegleria gruberi trophozoites with a construct that is maintained throughout passaging trophozoites in vitro, as well as through encystment and excystment.
All ribosomal genes of Naegleria trophozoites are maintained in a closed circular extrachromosomal ribosomal DNA (rDNA) containing element (CERE). While little is known about the CERE, a complete genome sequence analysis of three Naegleria species clearly demonstrates that there are no rDNA cistrons in the nuclear genome. Furthermore, a single DNA origin of replication has been mapped in the N. gruberi CERE, supporting the hypothesis that CERE replicates independently of the nuclear genome. This CERE characteristic suggests that it may be possible to use engineered CERE to introduce foreign proteins into Naegleria trophozoites. As the first step in exploring the use of a CERE as a vector in Naegleria, we developed a protocol to transfect N. gruberi with a molecular clone of the N. gruberi CERE cloned into pGEM7zf+ (pGRUB). Following transfection, pGRUB was readily detected in N. gruberi trophozoites for at least seven passages, as well as through encystment and excystment. As a control, trophozoites were transfected with the backbone vector, pGEM7zf+, without the N. gruberi sequences (pGEM). pGEM was not detected after the first passage following transfection into N. gruberi, indicating its inability to replicate in a eukaryotic organism. These studies describe a transfection protocol for Naegleria trophozoites and demonstrate that the bacterial plasmid sequence in pGRUB does not inhibit successful transfection and replication of the transfected CERE clone. Furthermore, this transfection protocol will be critical in understanding the minimal sequence of the CERE that drives its replication in trophozoites, as well as identifying regulatory regions in the non-ribosomal sequence (NRS).
The Naegleria genus contains over 45 species, although it is unlikely that all members of the species have been identified1. Naegleria can exist in different forms: as trophozoites (amoebae), as flagellates, or, when resources are severely limited, as cysts1,2,3,4. The Naegleria genus is recognized for its one particularly dangerous species, Naegleria fowleri, known as 'the brain-eating amoeba' (reviewed in1,2,<....
The details of the species, reagents, and equipment used in this study are listed in the Table of Materials. The sequence of the 17,004 base pair pGRUB construct is provided in Supplementary File 1.
1. Culturing trophozoites
PCR of trophozoites that have been transfected with pGRUB demonstrates that the transfected CERE is detected through at least seven passages of the trophozoites, as well as encystment and excystment (Figure 4). The primers used in the PCR anneal to both the pGEM vector and the CERE sequence, thereby ensuring that the PCR does not detect native CERE. PCR following transfection of pGEM into trophozoites indicated that pGEM was negative (Figure 4), indicating that .......
The protocol outlined herein is very straightforward, although every construct will likely require some degree of optimization, particularly of the DNA-transfection reagent ratio, depending on the nature of the construct and the species of Naegleria used. We have only tested one commercially available transfection reagent using this protocol, but it is likely that several others may be effective. Given that a full-length clone of the CERE is used, containing a functional origin of replication and thus replicatin.......
These studies were partially funded by a grant from the George F. Haddix Fund of Creighton University (KMD). Figure 1 is generated in biorender.com, and Figure 3 is generated in benchling.com.
....Name | Company | Catalog Number | Comments |
Agarose | Bio Rad | 161-3102 | |
Ammonium Acetate | Sigma Aldrich | A-7330 | |
Calcium Chloride | Sigma Aldrich | C-4901 | |
Crushed ice | |||
Culture Flasks, T-75 | Thermo Scientific | 130190 | |
Culture Plate, 6-well | Corning | 3506 | |
DNAse | Sigma Aldrich | D-4527 | |
EDTA, 0.5 M | Affymetrix | 15694 | |
Electropheresis Gel Apparatus | Amersham Biosciences | 80-6052-45 | |
Eppendorf Tubes, 1.5 mL | Fisher Scientific | 05-408-129 | |
Eppendorf Tubes, 2 mL | Fisher Scientific | 05-408-138 | |
Ethanol, 100% | Decon Laboratories | 2716 | |
Ethidium Bromide | Sigma Aldrich | E-8751 | |
Fetal Bovine Serum | Gibco | 26140 | |
Folic Acid | Sigma Aldrich | F7876-25G | |
GeneRuler 1 kb Plus Ladder | Thermo Scientific | SM1331 | |
Glacial Acetic Acid | Fisher Scientific | UN2789 | |
GoTaq Green PCR Master Mix | Promega | M7122 | |
Heating Block | Thermo Scientific | 88871001 | |
Hemacytometer | Hausser Scientific | 1483 | |
Hemin | Sigma Aldrich | 51280 | |
Iron Chloride | Sigma Aldrich | 372870-256 | |
Ligase | NEB | M2200S | |
Magneisum Chloride | Fisher Scientific | M33-500 | |
Microfuge | Thermo Scientific | MySpin 12 | |
Microscope | Nikon | TMS | |
N. gruberi | ATCC | 30224 | |
Nucleic Acid | Chem Impex Int’l | #01625 | |
Peptone | Gibco | 211677 | |
pGEM | Promega | P2251 | |
Potassium Phosphate | Sigma Aldrich | P0662-500G | |
PowerPac HC Electropharesis Power Supply Unit | Bio Rad | 1645052 | |
Sodium Chloride | MCB Reagents | SX0420 | |
Sodium Phosphate, dibasic | Sigma Aldrich | S2554 | |
Tabletop Centrifuge | eppendorf | 5415R | |
Tris, base | Sigma Aldrich | T1503-1KG | |
Trypan Blue, 0.4% | Gibco | 15250-061 | |
ViaFect Reagent | Promega | E4981 | |
Weigh Scale | Denver Instruments | APX-60 | |
Yeast Extract | Gibco | 212750 |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados