JoVE Logo

S'identifier

Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Ce protocole vise à décellulariser le cœur et les poumons des souris. Les échafaudages de matrice extracellulaire (ECM) qui en résultent peuvent être immunocolorés et imagés pour cartographier l’emplacement et la topologie de leurs composants.

Résumé

Nous présentons ici un protocole de décellularisation pour le cœur et les poumons des souris. Il produit des échafaudages ECM structurels qui peuvent être utilisés pour analyser la topologie et la composition ECM. Il est basé sur une procédure microchirurgicale conçue pour cathétériser la trachée et l’aorte d’une souris euthanasiée afin de perfuser le cœur et les poumons avec des agents décellularisants. Le complexe cardiopulmonaire décellularisé peut ensuite être immunocoloré pour révéler l’emplacement des protéines ECM structurelles. L’ensemble de la procédure peut être complété en 4 jours.

Les échafaudages ECM résultant de ce protocole sont exempts de distorsions dimensionnelles. L’absence de cellules permet l’examen structurel des structures ECM jusqu’à une résolution submicronique en 3D. Ce protocole peut être appliqué aux tissus sains et malades de souris aussi jeunes que 4 semaines, y compris des modèles murins de fibrose et de cancer, ouvrant la voie à la détermination du remodelage ECM associé à la maladie cardiopulmonaire.

Introduction

L’ECM est un réseau tridimensionnel composé de protéines et de glycanes qui accueille toutes les cellules d’un organisme multicellulaire, donnant aux organes leur forme et régulant le comportement cellulaire tout au long de la vie1. À partir de la fécondation des ovules, les cellules construisent et remodèlent l’ECM, et sont à leur tour strictement contrôlées par celui-ci. Le but de ce protocole est d’ouvrir la voie à l’analyse et à la cartographie de l’ECM de la souris, car les souris sont l’organisme modèle le plus utilisé en physiopathologie des mammifères.

Le développement de cette méthode a été motivé par la nécessité de caractériser et d’isoler l’ECM2 natif associé aux métastases. Comme les tumeurs manquent de vascularisation anatomique appropriée et que les souris sont des organismes relativement petits, les procédures microchirurgicales ont été conçues pour cathétériser rétrogradement l’aorte, tout en isolant la circulation du vaisseau majeur menant à une tumeur (par exemple, les veines pulmonaires), concentrant ainsi le flux de réactif et permettant la décellularisation tumorale. Cette méthode produit des échafaudages ECM avec une structure conservée2 qui peut être immunocolorée et imagée, permettant une cartographie de la structure ECM dans des détails submicroniques. Pour réaliser ce protocole, il est nécessaire d’acquérir des compétences chirurgicales et microchirurgicales (dissection, microsuturing et cathétérisme) qui peuvent représenter une limitation potentielle à son utilisation. À notre connaissance, cette méthode représente l’état de l’art pour l’analyse d’imagerie de structure ECM native2,3.

Protocole

Toutes les procédures incluses ici ont été examinées et approuvées par le comité d’éthique réglementant la médecine expérimentale de l’Université de Copenhague et sont conformes à la législation danoise et européenne. Pour démontrer ce protocole, nous avons utilisé des souris femelles BALB/cJ âgées de 8 à 12 semaines et une souris femelle MMTV-PyMT âgée de 11 semaines.

REMARQUE: Éviter la contamination bactérienne de l’échafaudage ECM décellularisé donne le meilleur résultat d’imagerie et permet le stockage à long terme des échantillons. Il est donc important de garder toutes les étapes stériles. En tant que tels, tous les instruments et le matériel chirurgical, y compris la suture, la micro-suture, les solutions, les tubes, les connecteurs Luer et les cathéters, doivent être stériles. Les surfaces, y compris un plateau en polystyrène, doivent être désinfectées avec de l’éthanol à 70% et la perfusion doit de préférence être effectuée sous une hotte à écoulement laminaire. Toutes les procédures ont lieu à température ambiante, sauf indication contraire.

1. Microchirurgie post-mortem

  1. Euthanasier la souris à l’aide d’une chambre à CO2 .
    1. Placez la souris dans une chambre de 4 L et commencez à remplir avec 100% de CO2, en commençant à 0,2 L / min pendant 2 min, en augmentant jusqu’à atteindre un débit de 0,8 L / min après 3 min. La souris devrait tomber inconsciente pendant les 2 premières minutes, puis la respiration devrait cesser (généralement autour de 5 minutes, mais le flux peut être maintenu si nécessaire). Confirmez le décès avant de passer à l’étape suivante.
  2. Rasez le thorax, l’abdomen et le dos de la souris avec la tondeuse à cheveux et désinfectez avec de l’éthanol à 70%. Le rasage réduit considérablement le nombre d’artefacts en raison de la présence de poils sur des échantillons pour l’imagerie ou l’analyse biochimique.
  3. Épinglez la souris à un plateau en polystyrène, en étendant ses membres antérieurs et postérieurs, ainsi que sa tête et sa queue. Placez-le sous le microscope de microchirurgie.
  4. À l’aide d’un motif droit Mayo, les ciseaux établissent un accès chirurgical avec une incision cutanée allant de la région sous-maxillaire au bas-ventre et dissèquent par voie sous-cutanée pour exposer la paroi thoracique et le péritoine.
  5. À l’aide de ciseaux microchirurgicaux, coupez les muscles pectoraux majeurs et pectoraux mineurs le long du sixième espace intercostal des deux côtés de la paroi thoracique.
  6. À l’aide de ciseaux à motif droit, coupez le sternum le long des incisions précédentes, puis complétez une sternotomie en coupant le sternum le long de son long axe, puis élevez et épinglez les deux côtés de la paroi thoracique pour exposer le complexe cardiopulmonaire.
  7. À l’aide de micro-pinces à pointe ronde (ou micro-pinces Demont), excisez le thymus et le tissu adipeux environnant en les retirant délicatement de leurs attaches. Cela révélera les principaux navires.
  8. À l’aide de la cautérisation, cautériser la veine cava descendante et, à l’aide de ciseaux à motif droit, couper l’œsophage.
  9. À l’aide de micro-pinces pointues, séparez les veines brachiocéphales et les artères carotides communes gauches et sous-clavières brachiocéphales du tissu sous-jacent pour faciliter la ligature et la cautérisation.
  10. À l’aide d’un porte-micro-aiguille, de micro-pinces pointues et d’une suture 9-0 placent les points de suture au-dessus de l’émergence des artères brachiocéphales, carotides communes gauches et sous-clavières gauches.
  11. Cautériser les veines brachiocéphales.
  12. Séparez les glandes salivaires sous-maxillaires le long de la ligne médiane pour exposer les muscles du cou et la trachée. Séparez les muscles pour exposer le ligament cricothyroïdien. À l’aide de micro-ciseaux, ouvrez une entrée en sectionnant le ligament.
  13. Introduire un cathéter de 27 G dans la trachée et pousser délicatement jusqu’à ce que la trachée se ramifie dans les bronches (c.-à-d. jusqu’à ce que la résistance au cathéter soit rencontrée, puis reculez de 3 mm). Attention à ne pas perturber les bronches. À l’aide d’une suture 6-0, placez 3 points de suture autour de la trachée pour fixer le cathéter.
  14. Sectionnez la souris à la hauteur de la 12e vertèbre thoracique. L’aorte descendante s’étend antérieurement à la colonne vertébrale et doit être sectionnée ici avec la colonne vertébrale. Séparez la moitié inférieure.
  15. Cathétériser rétrogradement l’aorte et pousser le cathéter jusqu’à ce qu’il atteigne l’arc aortique. À l’aide d’une suture 9-0, placez 4 points de suture autour de l’aorte, en commençant à 5 mm sous la pointe du cathéter.

2. Décellularisation

  1. Connectez la souris à un système de pompe à l’aide de tubes en silicone et de connecteurs Luer. Perfuser avec de l’eau désionisée à 200 μL/min pendant 15 min. Maintenir ce débit pendant la décellularisation.
  2. Changer l’agent de perfusion à 0,5% de désoxycholate de sodium (DOC) dilué dans de l’eau désionisée et perfuser pendant la nuit.
  3. Changer l’agent de perfusion en sulfate de dodécyle de sodium (SDS) à 0,1% dilué dans de l’eau désionisée et perfuser pendant 8 heures.
  4. Perfuser avec de l’eau désionisée pendant la nuit pour laver les FDS et les DOC pendant 24 h.
  5. Réséquez le cœur et les poumons décellularisés en sectionnant ses attaches au thorax à l’aide d’un ciseau incurvé et stockez-le dans un cryotube stérile avec de l’eau désionisée contenant 1 % (v/v) de pénicilline-streptomycine et 0,3 μM d’azoture de sodium à 4 °C. Les échafaudages ECM peuvent être conservés pendant au moins 12 semaines1. Si l’échafaudage est utilisé pour l’analyse biochimique (p. ex., spectrométrie de masse), congelez-le dans de l’azote liquide.

3. Immunocoloration

  1. Planifiez l’imagerie : déterminez l’anticorps primaire (ou les anticorps) et la combinaison d’anticorps secondaires conjugués par fluorescence pour qu’ils correspondent les uns aux autres et s’adaptent aux lignes laser du microscope à fluorescence.
  2. Bloquez l’échantillon en l’immergeant dans un cryotube contenant 6% (v/v) de sérum d’âne - 3% (p/v) d’albumine sérique bovine (BSA) pendant la nuit.
  3. Incuber avec des anticorps primaires (ou des anticorps) dans du sérum d’âne à 3% dans le PBS pendant 24 h.
  4. Laver 5 fois pendant 1 h à chaque fois à 0,05% entre 20 dans PBS (PBST).
  5. Incuber l’échantillon avec des anticorps secondaires (ou anticorps) conjugués par fluorescence dans du sérum d’âne à 3% dans du PBS pendant 24 h.
  6. Laver 5 fois pendant 1 heure à 0,05% (PBST). Attendez 1 h entre chaque lavage.
  7. Ajouter l’eau désionisée et conserver à 4 °C à l’abri de la lumière directe. À ce stade, l’échafaudage est prêt à imager.

4. Imagerie

  1. Placez l’échantillon dans un plat à fond de verre et humidifiez-le avec deux gouttelettes de solution de stockage (PBS ou eau désionisée).
  2. Préparez l’objectif. Nous vous recommandons d’utiliser un objectif d’immersion dans l’eau.
  3. Inspectez l’échantillon à l’aide d’une lumière de fluorescence.
  4. Passez au contrôle de l’ordinateur. Allumez les lasers et ajustez l’intensité du laser, l’ouverture du sténopé, les longueurs d’onde des détecteurs, le gain, la résolution et le zoom. Définissez le nombre et la taille de l’étape pour z-stack et commencez l’acquisition. Nous recommandons d’utiliser l’excitation laser multiphotonique pour augmenter la pénétration des tissus et minimiser la diffusion de la lumière, le blanchiment et les dommages tissulaires.

5. Coloration à l’hématoxyline-éosine

  1. Excise 1 lobe pulmonaire d’une souris euthanasiée.
  2. Placer dans un cryomoulage de 10 mm x 10 mm x 5 mm et le recouvrir d’environ 500 μL de composé OCT.
  3. Congeler sur de la glace carbonique (-70 °C) et maintenir l’échantillon à cette température.
  4. Exciser un lobe pulmonaire décellularisé d’une souris traitée conformément à l’étape 2.5.
  5. Placez dans un cryomoulage avec la plus grande surface vers le bas et recouvrez-le de composé OCT comme spécifié à l’étape 5.2.
  6. Lyophiliser sur de la glace carbonique (-70 °C) et maintenir l’échantillon à cette température jusqu’à ce qu’il en soit autrement. L’échantillon peut être conservé pendant au moins 12 semaines.
  7. Couper les blocs de tissu congelé à -20 °C dans un cryostat de 5 μm d’épaisseur et placer des sections sur des lames de verre adhésif et les stocker à -80 °C.
  8. Porter les lames à température ambiante jusqu’à séchage à l’air (environ 20 min).
  9. Immergez-vous rapidement dans pbS et fixez en immergeant les lames dans 4% de paraformaldéhyde dans pbS pendant 15 min. Laver une fois dans du PBS pendant 5 min, puis deux fois dans de l’eau distillée pendant 5 min.
  10. Plonger dans la solution d’hématoxyline de Mayer pendant 10 min. Ce temps peut être optimisé en fonction de la source tissulaire et de la préparation des taches.
  11. Laver dans un pot Coplin sous eau distillée courante pendant 10 min.
  12. Immerger dans une solution d’éosine pendant 7 min. Ce temps peut être optimisé en fonction de la source tissulaire et de la préparation des taches.
  13. Tremper dans 50% d’éthanol pour éliminer l’excès d’éosine et déshydrater en trempant rapidement dans 70% d’éthanol, et dans 96% et 100% d’éthanol pendant 30 secondes. Tremper dans le xylène plusieurs fois.
  14. Appliquez quelques gouttes de support de montage DPX et placez un couvercle en verre.
  15. Laissez sécher les lames pendant la nuit sous une hotte chimique.
  16. Numérisez des diapositives dans un scanner de diapositives.

Résultats

Décellularisation cardiopulmonaire
Après avoir terminé avec succès le protocole, le cœur et les poumons, ainsi que le tissu annexe tel que l’arc aortique, seront exempts de cellules. La décellularisation peut être validée par coloration à l’hématoxyline-éosine (Figure 1) des échafaudages ECM montrant l’élimination des noyaux par rapport au tissu natif. Ces échafaudages conservent les dimensions des organes frais et sa s...

Discussion

Les techniques de décellularisation basées sur l’agitation tissulaire modifient la structure de l’ECM, ce qui les rend impropres à l’analyse de la structure de l’ECM4. La décellularisation par perfusion, utilisant une voie anatomique telle que l’aorte de la trachée, permet d’atteindre le lit capillaire, ou alvéole terminale, et facilite l’administration d’agents décellularisants dans tout l’organe. L’utilisation de détergents zwittérioniques, anioniques et non ioniques...

Déclarations de divulgation

Les auteurs n’ont rien à divulguer.

Remerciements

Nous remercions les professeurs Ivana Novak et Nynne Meyn Christensen (Centre for Advanced Bioimaging (CAB), Université de Copenhague) d’avoir fourni un accès au microscope. Ces travaux ont été soutenus par le Conseil européen de la recherche (ERC-2015-CoG-682881-MATRICAN; AEM-G, OW, RR et JTE); une bourse de doctorat de la Fondation Lundbeck (R286-2018-621; MR); le Conseil suédois de la recherche (2017-03389; MDP); la Société suédoise du cancer, Cancerfonden (CAN 2016/783, 19 0632 Pj, et 190007; MDP); Aide allemande contre le cancer (Deutsche Krebshilfe; RR); et la Société danoise du cancer (R204-A12454; RR).

matériels

NameCompanyCatalog NumberComments
MICROSURGERY
6-0 suture, triangular section needle (Vicryl)Ethicon6301124
9-0 micro-suture (Safil)B BraunG1048611
Adson forcepsFine Science Tools11006-12
Adson forceps with teethFine Science Tools11027-12
Castroviejo microneedle holderFine Science Toolsno. 12061-01
CO2 ventilation chamber for mouse euthanasia
Deionized water (Milli-Q IQ 7000, Ultrapure lab water system) MerckZIQ7000T0
Disposable polystyrene tray (~30 × 50 cm)
Dissection microscope (Greenough, with two-armed gooseneck)LeicaS6 D
Double-ended microspatulaFine Science Tools10091-12
Dumont microforceps (two)Fine Science Tools11252-20
Dumont microforceps with 45° tips (two)Fine Science Tools11251-35
Hair clippersOster76998-320-051
Halsey needle holder (with tungsten carbide jaws)Fine Science Tools12500-12
Intravenous 24-gauge catheter (Insyte)BD381512
Intravenous 26-gauge catheter (Terumo)Surflo-WSR+DM2619WX
Mayo scissors (tough cut, straight)Fine Science Tools14110-15
Microforceps with ringed tips (two)AesculapFM571R
Micro-spring scissors (Vannas, curved)Fine Science Tools15001-08
MinicutterKLS Martin80-008-03-04
Molt PeriostotomeAesculapD0543R
Needles (27 gauge; Microlance)BD21018
Paper towel (sterile) or surgical napkin 
Serrated scissors (CeramaCut, straight)Fine Science Tools14958-09
Spatula (Freer-Yasargil)AesculapOL166R
Syringes (1 mL; Plastipak)BD3021001
Syringes (10 mL; Plastipak)BD3021110
Tendon scissors (Walton)Fine Science Tools14077-09
IMMUNOSTAINING
Alexa Fluor 488 donkey anti-guinea pig IgGThermo Fisher ScientificA-11055
Alexa Fluor 594 donkey anti-rabbit IgGLife TechnologiesA11037
BSA(albumin bovine fraction V, standard grade, lyophilized) Serva11930.03
Collagen IV polyclonal antibody (RRID: AB_2276457) MilliporeAB756PHost: rabbit
PBS (pH 7.4, 10×, Gibco) Thermo Fisher Scientific70011044Host: goat
Periostin polyclonal antibody (a kind gift from Manuel Koch. RRID:AB2801621)Host: guinea pig
Scalpel disposable with blade no.11 (pcs. 10)VWR233-5364)
Serum (normal donkey serum) Jackson ImmunoResearch017-000-121
Tween 20Sigma-AldrichP9416-50ML
IMAGING
 Detectors (hybrid detector (Leica, HyD S model) and photomultiplier tubes (PMTs; ) Leica
 Fluorescence light source LeicaEL6000
 Microscope (inverted multiphoton microscope) LeicaSP5-X MP
 Objective (lambda blue, 20×, 0.70 numerical aperture (NA) IMM UV) LeicaHCX PL APO
 Two-photon Ti–sapphire laser (Spectra-physics, Mai Tai DeepSee model) 
 White-light laser (WLL) Leica
DECELLULARIZATION
70% Ethanol (absolute alcohol 99.9%); absolute alcohol must be adjusted to 70% (vol/vol) using deionized water Plum1680766
Deionized water (Milli-Q IQ 7000, Ultrapure lab water system) MerckZIQ7000T0
Luer-to-tubing male fittings (1/8 inch)World Precision Instruments13158-100
PBS (pH 7.4, 10×, Gibco) Thermo Fisher Scientific70011044
Penicillin-streptomycinGibco15140122
Peristaltic pump (with 12 channels)Ole Dich110AC(R)20G75
Silicone tubing (with 2-mm i.d. and 4 mm o.d.)Ole Dich31399
Sodium AzideSigma-Aldrich08591-1ML-F
Sodium deoxycholate (DOC)Sigma-AldrichD6750-100G
Sodium Dodecyl SulphateSigma-AldrichL3771-500G
H&E STAINING
4% PFAFisher Scientific15434389
96% EthanolPlum201446-5L
Absolute ethanolPlum201152-1L
Coverslips (24x50mm; 1000 pcs)Hounisen422.245
Cryomolds Intermediate (15 x 15 x 5 mm; 100 pcs)Tissue-Tek4566
CryostatLeicaCM3050S
DPX mounting mediumHounisen1001.0025
Eosin Y solution alcoholic 0.5%Sigma1024390500
Feather microtome blade stainless steel,C35 (50 pcs)Pfm medical207500003

Fisherbrand Superfrost Plus slides (25 x 75 mm; 144 pcs)
Thermofisher6319483
Mayers hematoxylinSigmaMHS32-1L
OCT compoundVWR361603E
Slide scanner (Nanozoomer)Hamamatsu Photonics
XyleneSigma534056-4L

Références

  1. Hynes, R. O. Extracellular matrix: not just pretty fibrils. Science. 326, 1216-1219 (2009).
  2. Mayorca-Guiliani, A. E., et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nature Medicine. 23, 890-898 (2017).
  3. Mayorca-Guiliani, A. E., et al. Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nature Protocols. 14, 3395-3425 (2019).
  4. White, L. J., et al. The impact of detergents on the tissue decellularization process: A TOF-sims study. Acta Biomaterialia. 50, 207-219 (2017).
  5. Ott, H. C., et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine. 14, 213-221 (2008).
  6. Uygun, B. E., et al. Organ re-engineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine. 16, 814-820 (2010).
  7. Susaki, E. A., et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature Protocols. 10, 1709-1727 (2015).
  8. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols. 9, 1682-1697 (2014).
  9. Erturk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protocols. 7, 1983-1995 (2012).
  10. Wershof, E., et al. A FIJI Macro for quantifying pattern in extracellular matrix. BioRxiv. , (2019).

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Cancer Researchnum ro 171D cellularisationpoumonsc urmatrice extracellulaire

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.